【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過點(diǎn)C、A、A′,求此拋物線的解析式;
(2)點(diǎn)M時(shí)第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問:當(dāng)點(diǎn)M在何處時(shí),△AMA′的面積最大?最大面積是多少?并求出此時(shí)M的坐標(biāo);
(3)若P為拋物線上一動(dòng)點(diǎn),N為x軸上的一動(dòng)點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時(shí),求點(diǎn)P的坐標(biāo),當(dāng)這個(gè)平行四邊形為矩形時(shí),求點(diǎn)N的坐標(biāo).
【答案】(1)y=-x2+3x+4;(2)△AMA′的面積最大S△AMA′=8,M(2,6);(3)當(dāng)P1(0,4),P2(3,4),P3(,-4),P4(,-4)時(shí),P、N、B、Q構(gòu)成平行四邊形;當(dāng)這個(gè)平行四邊形為矩形時(shí),N1(0,0),N2(3,0).
【解析】試題分析:(1)先由OA′=OA得到點(diǎn)A′的坐標(biāo),再用點(diǎn)C、A、A′的坐標(biāo)即可求此拋物線的解析式;(2)連接AA′, 過點(diǎn)M 作MN⊥x軸,交AA′于點(diǎn)N,把△AMA′分割為△AMN和△A′MN, △AMA′的面積=△AMA′的面積+△AMN的面積=OA′MN,設(shè)點(diǎn)M的橫坐標(biāo)為x,借助拋物線的解析式和AA′的解析式,建立MN的長(zhǎng)關(guān)于x的函數(shù)關(guān)系式,再據(jù)此建立△AMA′的面積關(guān)于x的二次函數(shù)關(guān)系式,再求△AMA′面積的最大值以及此時(shí)M的坐標(biāo);(3)在P、N、B、Q 這四個(gè)點(diǎn)中,B、Q 這兩個(gè)點(diǎn)是固定點(diǎn),因此可以考慮將BQ作為邊、將BQ作為對(duì)角線分別構(gòu)造符合題意的圖形,再求解.
試題解析:(1)∵平行四邊形ABOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′,點(diǎn)A的坐標(biāo)是(0,4),∴點(diǎn)A′的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(1,4).
∵拋物線過點(diǎn)C,A,A′,設(shè)拋物線的函數(shù)解析式為y=ax2+bx+c(a≠0),可得:
. 解得:.∴拋物線的函數(shù)解析式為y=-x2+3x+4.
(2)連接AA′,設(shè)直線AA′的函數(shù)解析式為y=kx+b,可得
.解得:.
∴直線AA'的函數(shù)解析式是y=-x+4.
設(shè)M(x,-x2+3x+4),
S△AMA′=×4×[-x2+3x+4一(一x+4)]=一2x2+8x=一2(x-2)2+8.
∴x=2時(shí),△AMA′的面積最大S△AMA′=8.
∴M(2,6).
(3)設(shè)P點(diǎn)的坐標(biāo)為(x,-x2+3x+4),當(dāng)P、N、B、Q構(gòu)成平行四邊形時(shí),
①當(dāng)BQ為邊時(shí),PN∥BQ且PN=BQ,
∵BQ=4,∴一x2+3x+4=±4.
當(dāng)一x2+3x+4=4時(shí),x1=0,x2=3,即P1(0,4),P2(3,4);
當(dāng)一x2+3x+4=一4時(shí),x3=,x4=,即P3(,-4),P4(,-4);
②當(dāng)BQ為對(duì)角線時(shí),PB∥x軸,即P1(0,4),P2(3,4);
當(dāng)這個(gè)平行四邊形為矩形時(shí),即Pl(0,4),P2(3,4)時(shí),N1(0,0),N2(3,0).
綜上所述,當(dāng)P1(0,4),P2(3,4),P3(,-4),P4(,-4)時(shí),P、N、B、Q構(gòu)成平行四邊形;當(dāng)這個(gè)平行四邊形為矩形時(shí),N1(0,0),N2(3,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,直線EF分別與AB,CD交于點(diǎn)G,H,GM⊥EF,HN⊥EF,交AB于點(diǎn)N,∠1=50°.
(1)求∠2的度數(shù);
(2)試說明HN∥GM;
(3)∠HNG=°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B兩點(diǎn)是直線AB與x軸的正半軸,y軸的正半軸的交點(diǎn),且OA,OB的長(zhǎng)分別是x2﹣14x+48=0的兩個(gè)根(OA>OB),射線BC平分∠ABO交x軸于C點(diǎn),若有一動(dòng)點(diǎn)P以每秒1個(gè)單位的速度從B點(diǎn)開始沿射線BC移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求OA,OB的長(zhǎng);
(2)設(shè)△APB和△OPB的面積分別為s1 , s2 , 求s1:s2;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中,△OPB可能是等腰三角形嗎?若可能,直接寫出時(shí)間t;若不可能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題:
(1)(﹣1)2012+(π﹣3.14)0﹣(﹣ )﹣1;
(2)a2bc3(﹣2a2b2c)2;
(3)(4a3b﹣6a2b22ab)÷2ab;
(4)x2﹣(x+2)(x﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】林老師騎摩托車到加油站加油,發(fā)現(xiàn)每個(gè)加油器上都有三個(gè)量,其中一個(gè)表示“元/升”其數(shù)值固定不變的,另外兩個(gè)量分別表示“數(shù)量”、“金額”,數(shù)值一直在變化,在這三個(gè)量當(dāng)中是常量,是變量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面幾種三角形:
①有兩個(gè)角為60°的三角形;
②三個(gè)外角都相等的三角形;
③一條邊上的高也是這條邊上的中線的三角形;
④有一個(gè)角為60°的等腰三角形.
其中是等邊三角形的有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有員工50人,為了提高經(jīng)濟(jì)效益,決定引進(jìn)一條新的生產(chǎn)線并從現(xiàn)有員工中抽調(diào)一部分員工到新的生產(chǎn)線上工作,經(jīng)調(diào)查發(fā)現(xiàn):分工后,留在原生產(chǎn)線上工作的員工每月人均產(chǎn)值提高40%;到新生產(chǎn)線上工作的員工每月人均產(chǎn)值為原來的3倍,設(shè)抽調(diào)x人到新生產(chǎn)線上工作.
(1)填空:若分工前員工每月的人均產(chǎn)值為a元,則分工后,留在原生產(chǎn)線上工作的員工每月人均產(chǎn)值是元,每月的總產(chǎn)值是元;到新生產(chǎn)線上工作的員工每月人均產(chǎn)值是元,每月的總產(chǎn)值是元;
(2)分工后,若留在原生產(chǎn)線上的員工每月生產(chǎn)的總產(chǎn)值不少于分工前原生產(chǎn)線每月生產(chǎn)的總產(chǎn)值;而且新生產(chǎn)線每月生產(chǎn)的總產(chǎn)值又不少于分工前生產(chǎn)線每月生產(chǎn)的總產(chǎn)值的一半.問:抽調(diào)的人數(shù)應(yīng)該在什么范圍?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com