【題目】一艘救生船在碼頭A接到小島C處一艘漁船的求救信號,立即出發(fā),沿北偏東67°方向航行10海里到達小島C處,將人員撤離到位于碼頭A正東方向的碼頭B,測得小島C位于碼頭B的北偏西53°方向,求碼頭A與碼頭B的距離.【參考數據:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75】
【答案】碼頭A與碼頭B相距14.4海里.
【解析】分析:過點C作CD⊥AB,垂足為D,在Rt△ACD中,求出CD和AD的長,再在在Rt△CDB中,求出DB的長,然后根據AB=AD+BD即可求得答案.
詳解:過點C作CD⊥AB,垂足為D,由題意得∠CAD=23°,
∠CBD=37°,
在Rt△ACD中,
∵sin∠CAD=,
∴CD=sin∠CAD·AC=0.39×10=3.9,
∵cos∠CAD=,
∴AD=cos∠CAD·AC=0.92×10=9.2 .
在Rt△CDB中,
∵tan∠CBD=,
∴DB===5.2 ,
∴AB=AD+BD=9.2+5.2=14.4 .
答:碼頭A與碼頭B相距14.4海里.
科目:初中數學 來源: 題型:
【題目】如圖,三角形ABC的三個頂點坐標為:A(1,4),B(﹣3,3),C(2,﹣1),三角形ABC內有一點P(m,n)經過平移后的對應點為P1(m+3,n-2),將三角形ABC做同樣平移得到三角形A1B1C1.
(1)在圖中畫出三角形A1B1C1, 并寫出A1、B1、C1三點的坐標;
(2)求三角形A1B1C1的面積.
(3)若以A,B,C,D為頂點的四邊形是平行四邊形,請直接寫出點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,∠AOE=90°.
(1)如圖1,若OC平分∠AOE,求∠AOD的度數;
(2)如圖2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點E是邊AC上一點,線段BE垂直于∠BAC的平分線于點D,點M為邊BC的中點,連接DM.
(1)求證: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若 x 滿足 (9x)(x4)=4, 求 (4x)2+(x9)2 的值.
設 9x=a,x4=b, 則 (9x)(x4)=ab=4,a+b=(9x)+(x4)=5 ,
∴(9x)2+(x4)2=a2+b2=(a+b)22ab=522×4=13
請仿照上面的方法求解下面問題:
(1)若 x 滿足 (5x)(x2)=2, 求 (5x)2+(x2)2 的值
(2)已知正方形 ABCD 的邊長為 x , E , F 分別是 AD 、 DC 上的點,且 AE=1 , CF=3 ,長方形 EMFD 的面積是 48 ,分別以 MF 、 DF 作正方形,求陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,G是BD上一點,連接CG并延長交BA的延長線于點F,交AD于點E.
(1)求證:△ADG≌△CDG.
(2)若=,EG=4,求AG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知等邊△ABC,頂點B(0,0),C(2,0),規(guī)定把△ABC先沿x軸繞著點C順時針旋轉,使點A落在x軸上 ,稱為一次變換,再沿x軸繞著點A順時針旋轉,使點B落在x軸上 ,稱為二次變換,……經過連續(xù)2017次變換后,頂點A的坐標是:
A. (4033, ) B. (4033,0) C. (4036, ) D. (4036,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本小題滿分10分)
如圖,點E是△ABC的內心,AE的延長線交BC于點F,交△ABC的外接圓⊙O于點D;連接BD,過點D作直線DM,使∠BDM=∠DAC.
(1)求證:直線DM是⊙O的切線;
(2)求證:DE2=DF·DA.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了調查學生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學生進行了相關知識測試,獲得了他們的成績(百分制),并對數據(成績)進行了整理、描述和分析。下面給出了部分信息.
a.甲、乙兩校40名學生成績的頻數分布統(tǒng)計表如下:
(說明:成績80分及以上為優(yōu)秀,7079分為良好,6069分為合格,60分以下為不合格)
b.甲校成績在70x<80這一組的是:70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績的平均分、中位數、眾數如下:
根據以上信息,回答下列問題:
(1)寫出表中n的值;
(2)在此次測試中,某學生的成績是74分,在他所屬學校排在前20名,由表中數據可知該學生是___校的學生(填“甲”或“乙”),理由是___;
(3)假設乙校800名學生都參加此次測試,估計成績優(yōu)秀的學生人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com