【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為(  )

A. ,0) B. (2,0) C. ,0) D. (3,0)

【答案】C

【解析】

解:過(guò)點(diǎn)BBDx軸于點(diǎn)D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在ACOBCD中,∵∠OAC=∠BCD,∠AOC=∠BDC,AC=BC,∴△ACO≌△BCD(AAS),∴OC=BD,OA=CD,∵A(0,2),C(1,0),∴OD=3,BD=1,∴B(3,1),∴設(shè)反比例函數(shù)的解析式為,將B(3,1)代入,∴k=3,∴,∴y=2代入,∴x=,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí),此時(shí)點(diǎn)A移動(dòng)了個(gè)單位長(zhǎng)度,C也移動(dòng)了個(gè)單位長(zhǎng)度,此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為(,0).故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.

(1)作出△ABD 的邊 BD 上的高.

(2)若△ABC 的面積為 10,求△ADC 的面積.

(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖,在等腰直角中,,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,則的面積為_______

(2)如圖,在直角 中,,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接,求的面積,并說(shuō)明理由.(用含的式子表示)

(3)如圖,在等腰中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接,若,則 的面積為 (用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C90°,∠CAD=∠BAD,DEABE,點(diǎn)F在邊AC上,連接DF

1)求證:ACAE;

2)若CFBE,直接寫(xiě)出線段AB,AF,EB的數(shù)量關(guān)系:   

3)若AC8,AB10,且ABC的面積等于24,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當(dāng)∠BAC+∠DAE=180°時(shí),我們稱△ABC與△DAE互為“頂補(bǔ)等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,點(diǎn)A叫做“旋補(bǔ)中心”.

特例感知:

(1)在圖2,圖3中,△ABC與△DAE互為“頂補(bǔ)三角形”,AM,AN是“頂心距”.

①如圖2,當(dāng)∠BAC=90°時(shí),AM與DE之間的數(shù)量關(guān)系為AM=  DE;

②如圖3,當(dāng)∠BAC=120°,BC=6時(shí),AN的長(zhǎng)為  

猜想論證:

(2)在圖1中,當(dāng)∠BAC為任意角時(shí),猜想AM與DE之間的數(shù)量關(guān)系,并給予證明.

拓展應(yīng)用

(3)如圖4,在四邊形ABCD,AD=AB,CD=BC,∠B=90°,∠A=60°,CD=2,在四邊形ABCD的內(nèi)部是否存在點(diǎn)P,使得△PAD與△PBC互為“頂補(bǔ)等腰三角形”?若存在,請(qǐng)給予證明,并求△PBC的“頂心距”的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出定義,若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形.

1)在你學(xué)過(guò)的特殊四邊形中,寫(xiě)出兩種勾股四邊形的名稱;

2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°

求證:△BCE是等邊三角形;

求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿邊AB向終點(diǎn)B運(yùn)動(dòng).過(guò)點(diǎn)PPQ⊥AB交折線ACB于點(diǎn)Q,DPQ中點(diǎn),以DQ為邊向右側(cè)作正方形DEFQ.設(shè)正方形DEFQ△ABC重疊部分圖形的面積是ycm2),點(diǎn)P的運(yùn)動(dòng)時(shí)間為xs).

1)當(dāng)點(diǎn)Q在邊AC上時(shí),正方形DEFQ的邊長(zhǎng)為 cm(用含x的代數(shù)式表示);

2)當(dāng)點(diǎn)P不與點(diǎn)B重合時(shí),求點(diǎn)F落在邊BC上時(shí)x的值;

3)當(dāng)0x2時(shí),求y關(guān)于x的函數(shù)解析式;

4)直接寫(xiě)出邊BC的中點(diǎn)落在正方形DEFQ內(nèi)部時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O直徑,C是半圓上一點(diǎn),連接BC、AC,過(guò)點(diǎn)OODBC與過(guò)點(diǎn)A的切線交于點(diǎn)D,連接DC并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)E.

(1)求證:DE是⊙O的切線;

(2)若AE=3,CE=,求線段CE、BE與劣弧BC所圍成的圖形面積(結(jié)果保留根號(hào)和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點(diǎn)A為切點(diǎn),BP與⊙O交于點(diǎn)C,點(diǎn)DAP的中點(diǎn),連結(jié)CD.

(1)求證:CD是⊙O的切線;

(2)若AB=2,P=30°,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案