【題目】1)操作發(fā)現(xiàn):如圖1,D是等邊三角形ABCBA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊三角形DCF,連接AF.你能發(fā)現(xiàn)線段AFBD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論.

2)類比猜想:如圖2,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)到等邊三角形ABCBA的延長線上時(shí),其他作法與(1)相同,猜想AFBD在(1)中的結(jié)論是否仍然成立?如果成立,請證明;如果不成立,是否有新的結(jié)論?如果有新的結(jié)論,直接寫出新的結(jié)論,不需證明.

3)深入探究:①如圖3,當(dāng)動(dòng)點(diǎn)D在等邊三角形ABC的邊BA上運(yùn)動(dòng)時(shí)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在其上方、下方分別作等邊三角形DCF和等邊三角形DCF',連接AFBF′.探究AF,BF′AB有何數(shù)量關(guān)系?并證明你發(fā)現(xiàn)的結(jié)論。

②如圖4,當(dāng)動(dòng)點(diǎn)D在等邊三角形ABC的邊BA的延長線上運(yùn)動(dòng)時(shí),其他作法與圖3相同,①中的結(jié)論是否仍然成立?如果成立,請證明;如果不成立,是否有新的結(jié)論?如果有新的結(jié)論,直接寫出新的結(jié)論,不需證明.

【答案】(1)BD=AF,理由見解析;(2)成立,BD=AF,理由見解析;(3)①AB=AF+BF',理由見解析;②不成立,新結(jié)論為AB=AF-BF',理由見解析

【解析】

1)證明BCD≌△ACF即可解題;

2)證明BCD≌△ACF即可解題;

3)①證明BCD≌△ACFBCF'≌△ACD可得BD=AFAD=BF'即可解題;

②證明BCD≌△ACFBCF'≌△ACD可得BD=AFAD=BF'即可證明新結(jié)論.

1)∵∠BCA=DCF,

∴∠BCD=ACF,

BCDACF中,

BCAC,∠BCD=∠ACF,CFCD,

∴△BCD≌△ACF,(SAS),

BD=AF;

2)∵∠BCA=DCF,

∴∠BCD=ACF,

BCDACF中,

BCAC,∠BCD=∠ACF,CFCD,

∴△BCD≌△ACFSAS),

BD=AF;

3)①∵∠BCA=DCF,

∴∠BCD=ACF

BCDACF中,

BCAC,∠BCD=∠ACF,CFCD

∴△BCD≌△ACFSAS),

BD=AF

∵∠BCA=DCF'

∴∠BCF'=ACD,

BCF'ACD中,

BCAC,∠ACD=∠BCF,′CDCF′,

∴△BCF'≌△ACDSAS),

AD=BF'

AB=AF+BF';

②不成立,新結(jié)論為AB=AF-BF'

證明∵∠BCA=DCF,

∴∠BCD=ACF,

BCDACF中,

BCAC,∠BCD=∠ACF,CFCD,

∴△BCD≌△ACFSAS),

BD=AF;

∵∠BCA=DCF'

∴∠BCF'=ACD,

BCF'ACD中,

BCAC,∠ACD=∠BCF′CDCF′,

∴△BCF'≌△ACDSAS),

AD=BF'

AB=AF-BF'

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AE平分∠BAD,DE平分∠ADC.

1)如果∠B+∠C120°,則∠AED的度數(shù)=______.(直接寫出結(jié)果)

2)根據(jù)⑴的結(jié)論,猜想∠B+∠C與∠AED之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE把∠BOD分成兩部分;

(1)直接寫出圖中∠AOC的對頂角為   ,∠BOE的鄰補(bǔ)角為   

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點(diǎn)是線段的中點(diǎn),過點(diǎn)的垂線,在射線上有一個(gè)動(dòng)點(diǎn)(點(diǎn)不與端點(diǎn)重合),連接,過點(diǎn)的垂線,垂足為點(diǎn),在射線上取點(diǎn),使得,已知

(1)當(dāng)時(shí),求的度數(shù);

(2)過點(diǎn)垂直于直線于點(diǎn),在點(diǎn)的運(yùn)動(dòng)過程中,的大小隨點(diǎn)的運(yùn)動(dòng)而變化,在這個(gè)變化過程中線段的長度是否發(fā)生變化?若不變,求出的長;若變化,請說明理由;

(3)如圖2,當(dāng)時(shí),設(shè)直線與直線相交于點(diǎn),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDABC的中線,ABD的周長比BCD的周長多2 cm.ABC的周長為18 cm,且AC4 cm,求ABBC的長..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為8,點(diǎn)P是邊AD的中點(diǎn),點(diǎn)E是正方形ABCD的邊上一點(diǎn),若是等腰三角形,則腰長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形中,邊上一點(diǎn),點(diǎn)出發(fā)以秒的速度沿線段運(yùn)動(dòng),同時(shí)點(diǎn)出發(fā),沿線段、射線運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到,兩點(diǎn)都停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為(秒):

1)當(dāng)的速度相同,且時(shí),求證:

2)當(dāng)的速度不同,且分別在上運(yùn)動(dòng)時(shí)(如圖1),若全等,求此時(shí)的速度和值;

3)當(dāng)運(yùn)動(dòng)到上,運(yùn)動(dòng)到射線上(如圖2),若的速度為秒,是否存在恰當(dāng)?shù)倪?/span>的長,使在運(yùn)動(dòng)過程中某一時(shí)刻剛好全等,若存在,請求出此時(shí)的值和邊的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)O,過點(diǎn)ODEBC,分別交AB、AC于點(diǎn)D、E

1)△BDO是等腰三角形嗎?請說明理由.

2)若AB=10,AC=6,求△ADE的周長.

查看答案和解析>>

同步練習(xí)冊答案