(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,C點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C′點(diǎn).
(1)求C點(diǎn),C′點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對(duì)稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C,C′,P,Q為頂點(diǎn)的四邊形是平行四邊形,求Q點(diǎn)和P點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(3)在(2)的條件下,求出平行四邊形的周長(zhǎng).

【答案】分析:(1)根據(jù)拋物線的解析式y(tǒng)=x2-2x-m(m>0)可求出對(duì)稱軸直線,令x=0,可求出C點(diǎn)坐標(biāo),根據(jù)其對(duì)稱軸可求出C′的坐標(biāo).
(2)畫出圖形,根據(jù)平行四邊形的性質(zhì),令對(duì)邊平行且相等或?qū)蔷互相垂直平分解答.
(3)根據(jù)勾股定理求出各邊長(zhǎng),即可求出四邊形周長(zhǎng).
解答:解:(1)所求對(duì)稱軸為直線x=1,C(0,-m)C′(2,-m);

(2)如圖所示
①當(dāng)PQ∥CC′且PQ=2時(shí),P橫坐標(biāo)為3,代入二次函數(shù)解析式求得P(3,3-m),
②當(dāng)P′Q∥CC′且PQ=2時(shí),P橫坐標(biāo)為-1,代入二次函數(shù)解析式求得P(-1,3-m),
③因?yàn)镃C′⊥Q'P″,當(dāng)Q′F=P″F,CF=C'F時(shí),P″為二次函數(shù)頂點(diǎn)坐標(biāo),為(1,-1-m),
由于P″和Q′關(guān)于直線CC′對(duì)稱,
所以Q′縱坐標(biāo)為2(-m)+1+m=-m+1,
得Q′(1,1-m),
所以滿足條件的P、Q坐標(biāo)為P(-1,3-m),Q(1,3-m);P′(3,3-m),Q(1,3-m);P″(1,-1-m),Q′(1,1-m).

(3)①因?yàn)镼點(diǎn)縱坐標(biāo)為3-m,C點(diǎn)縱坐標(biāo)為-m,
所以CW=3-m+m=3,又因?yàn)閃Q=1,
所以CQ==,
又因?yàn)镃C′=2,
所以平行四邊形CC′P′Q周長(zhǎng)為(2+)×2=4+2,
同理,平行四邊形CC′QP周長(zhǎng)也為4+2
②因?yàn)镃F=1,F(xiàn)Q=[1-m-(-1-m)]=1,C′Q==
平行四邊形CC′P′Q周長(zhǎng)為4,
所求平行四邊形周長(zhǎng)為4+2
點(diǎn)評(píng):本題是一道中考?jí)狠S題,考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.尤其是(2)題,有一定的開(kāi)放性,最好是借助圖象進(jìn)行解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,C點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C′點(diǎn).
(1)求C點(diǎn),C′點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對(duì)稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C,C′,P,Q為頂點(diǎn)的四邊形是平行四邊形,求Q點(diǎn)和P點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(3)在(2)的條件下,求出平行四邊形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年福建省福州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,C點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C′點(diǎn).
(1)求C點(diǎn),C′點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對(duì)稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C,C′,P,Q為頂點(diǎn)的四邊形是平行四邊形,求Q點(diǎn)和P點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(3)在(2)的條件下,求出平行四邊形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年福建省福州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,C點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C′點(diǎn).
(1)求C點(diǎn),C′點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對(duì)稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C,C′,P,Q為頂點(diǎn)的四邊形是平行四邊形,求Q點(diǎn)和P點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(3)在(2)的條件下,求出平行四邊形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2005•福州)已知:如圖,點(diǎn)C、D在線段AB上,PC=PD.請(qǐng)你添加一個(gè)條件,使圖中存在全等三角形并給予證明.所加條件為:______,你得到的一對(duì)全等三角形是△______≌△______.

查看答案和解析>>

同步練習(xí)冊(cè)答案