【題目】我國的農(nóng)作物主要以水稻、玉米和小麥為主,種植太單調(diào)不利于土壤環(huán)境的維護,而且對農(nóng)業(yè)的發(fā)展也沒有促進作用,為了鼓勵大豆的種植,國家對種植大豆的農(nóng)民給予補貼,調(diào)動農(nóng)民種植大豆的積極性.我市乃大豆之鄉(xiāng),今年很多合作社調(diào)整種植結(jié)構(gòu),把種植玉米改成種植大豆,今年我市某合作社共收獲大豆200噸,計劃采用批發(fā)和零售兩種方式銷售.經(jīng)市場調(diào)查,批發(fā)平均每天售出14噸,由于今年我市小型大豆深加工企業(yè)的增多,預(yù)計能提前完成銷售任務(wù),在平均每天批發(fā)量不變的情況下,實際平均每天的零售量比原計劃的2倍還多14噸,結(jié)果提前5天完成銷售任務(wù)。那么原計劃零售平均每天售出多少噸?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,點.
(1)①畫出線段關(guān)于軸對稱的線段;
②在軸上找一點使的值最。ūA糇鲌D痕跡);
(2)按下列步驟,用不帶刻度的直尺在線段找一點使.
①在圖中取點,使得,且,則點的坐標為___________;
②連接交于點,則點即為所求.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(x2﹣4x+2)(x2﹣4x+6)+4進行因式分解的過程
解:設(shè)x2﹣4x=y,
原式=(y+2)(y+6)+4。ǖ谝徊剑
=y2+8y+16。ǖ诙剑
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)該同學第二步到第三步運用了因式分解的 (填序號).
A.提取公因式 B.平方差公式
C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學在第四步將y用所設(shè)中的x的代數(shù)式代換,得到因式分解的最后結(jié)果.這個結(jié)果是否分解到最后? .(填“是”或“否”)如果否,直接寫出最后的結(jié)果 .
(3)請你模仿以上方法嘗試對多項式(x2﹣2x)(x2﹣2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線y=x+b與x軸交于點A,與y軸交于點B,點P坐標為(3,0),過點P作PC⊥x軸于P,且△ABC為等腰直角三角形.
(1)如圖,當∠BAC=90°,AB=AC時,求證△ABO≌△CAP;
(2)當AB為直角邊時,請直接寫出所有可能的b值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+x﹣4與y軸相交于點A,與x軸相交于B和點C(點C在點B的右側(cè),點D的坐標為(4,﹣4),將線段OD沿x軸的正方向平移n個單位后得到線段EF.
(1)當n= 時,點E或點F正好移動到拋物線上;
(2)當點F正好移動到拋物線上,EF與CD相交于點G時,求GF的長;
(3)如圖2,若點P是x軸上方拋物線上一動點,過點P作平行于y軸的直線交AC于點M,探索是否存在點P,使線段MP長度有最大值?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是中國古代數(shù)學的重要著作,方程術(shù)是它的最高成就,其中記載:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩.問:牛、羊各直金幾何?”譯文:“假設(shè)有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩.問:每頭牛、每只羊各值金多少兩?”設(shè)每頭牛值金x兩,每只羊值金y兩,則列方程組錯誤的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點P(2,﹣3).
(1)求該函數(shù)的解析式;
(2)若將點P沿x軸負方向平移3個單位,再沿y軸方向平移n(n>0)個單位得到點P′,使點P′恰好在該函數(shù)的圖象上,求n的值和點P沿y軸平移的方向.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點將線段分成兩部分,如果,那么稱點為線段的黃金分割點,某教學興趣小組在進行研究時,由“黃金分割點”聯(lián)想到“黃金分割線”,類似的給出“黃金分割線”的定義:“一直線將一個面積為的圖形分成兩部分,這兩部分的面積分別為,,如果,那么稱這條直線為該圖形的黃金分割線.
如圖,在中,,,的平分線交于點,請問直線是不是的黃金分割線,并證明你的結(jié)論;
如圖,在邊長為的正方形中,點是邊上一點,若直線是正方形的黃金分割線,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com