【題目】為了預防疾病,某單位對辦公室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:
(1)藥物燃燒時,y關于x的函數(shù)關系式為________,自變量x的取值范為________;藥物燃燒后,y關于x的函數(shù)關系式為________.
(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時員工方可進辦公室,那么從消毒開始,至少需要經(jīng)過________分鐘后,員工才能回到辦公室;
(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
【答案】(1)y=x;(0≤x≤8);y=(x>8);(2)30;(3)有效,理由見解析.
【解析】
(1)當0≤x≤8時,藥物燃燒時y與x之間是正比例函數(shù)關系,根據(jù)(8,6)利用待定系數(shù)法即可求出y與x之間的函數(shù)關系式;當x>8時,藥物燃燒后y與x的函數(shù)關系是反比例函數(shù)關系,根據(jù)(8,6)利用待定系數(shù)法即可求出y與x之間的函數(shù)關系式;
(2)將y=1.6代入反比例函數(shù)關系式,就可求出對應的自變量的值,結合圖像得出答案;
(3)把y=3代入正比例函數(shù)解析式和反比例函數(shù)解析式,求出相應的x,兩數(shù)之差與10進行比較,大于等于10就有效.
(1) 當0≤x≤8時,設y=kx,把(8,6)代入得
6=8k,
∴k=
∴y= x(0≤x≤8);
當x>8時,設y=,把(8,6)代入得
設6=,
∴m=48,
∴y= (x>8)
(2)當y=1.6時,
=1.6,
解之得
x=30,
結合圖像知,至少需要經(jīng)過30分鐘后,員工才能回到辦公室;
(3)把y=3代入y= x,得:x=4
把y=3代入y= ,得:x=16
∵16﹣4=12
所以這次消毒是有效的
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠BAC=90°,AB=AC, AE是過點A的一條直線,且B點和C點在AE的兩側,BD⊥AE 于點D,CE⊥AE于點E.
(1)求證:△ABD≌△ACE
(2)試說明線段BD,線段DE和線段CE的數(shù)量關系
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OB是以(O,a)為圓心,a為半徑的⊙O1的弦,過B點作⊙O1的切線,P為劣弧上的任一點,且過P作OB、AB、OA的垂線,垂足分別是D、E、F.
(1)求證:PD2=PEPF;
(2)當∠BOP=30°,P點為OB的中點時,求D、E、F、P四個點的坐標及S△DEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校為統(tǒng)籌安排大課間體育活動,在各班隨機選取了一部分學生,分成四類活動:“籃球”、“羽毛球”、“乒乓球”、“其他”進行調查,整理收集到的數(shù)據(jù),繪制成如下的兩幅統(tǒng)計圖.
(1)學校采用的調查方式是 ;學校共選取了 名學生;
(2)補全統(tǒng)計圖中的數(shù)據(jù):條形統(tǒng)計圖中羽毛球 人、乒乓球 人、其他 人、扇形統(tǒng)計圖中其他 %;
(3)該校共有1200名學生,請估計喜歡“乒乓球”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中,、、、分別是、、、的中點,要使四邊形是矩形,則四邊形只需要滿足一個條件是( )
A.四邊形是梯形B.四邊形是菱形
C.對角線D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣+bx+c與y軸交于點C,與x軸的兩個交點分別為A(﹣4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點P在拋物線上,連接PC,PB,若△PBC是以BC為直角邊的直角三角形,求點P的坐標;
(3)已知點E在x軸上,點F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請直接寫出點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,放在直角坐標系中的正方形ABCD邊長為4,現(xiàn)做如下實驗:拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數(shù)分別是1至4這四個數(shù)字中一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點數(shù)作為直角坐標中P點的坐標)第一次的點數(shù)作橫坐標,第二次的點數(shù)作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內部和邊界)的概率.
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD
面上的概率為0.75;若存在,指出其中的一種平移方式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲容器中裝有濃度為a的果汁,乙容器中裝有濃度為b的果汁,兩個容器都倒出m kg,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,兩容器內的果汁濃度相同,則m的值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c上部分點的橫坐標x,縱坐標y,的對應值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -4 | -4 | 0 | 8 | … |
(1)根據(jù)上表填空:
①拋物線與x軸的交點坐標是_________和_________;
②拋物線經(jīng)過點(-3,_________);
(2)試確定拋物線y=ax2+bx+c的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com