【題目】如圖,點(diǎn)C在射線OA上,CE平分∠ACD. OF平分∠COB并與射線CD交于點(diǎn)F。
(1)依題意補(bǔ)全圖形;
(2)若∠COB+∠OCD=180°,求證:∠ACE=∠COF。
請將下面的證明過程補(bǔ)充完整。
證明:∵CE平分∠ACD,OF平分∠COB,
∴∠ACE=______________,∠COF=∠COB。
(理由: _____________________________________)
∵點(diǎn)C在射線OA上,
∴∠ACD+∠OCD=180°。
∵∠COB+∠OCD=180°,
∴∠ACD=∠____________。
(理由: ___________________________________)
∴∠ACE=∠COF。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點(diǎn)F,垂足為E,連接DF,則∠CDF等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市團(tuán)委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學(xué)校參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為70分,80分,90分,100分,并根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下不完整的統(tǒng)計(jì)圖表:
乙校成績統(tǒng)計(jì)表
分?jǐn)?shù)(分) | 人數(shù)(人) |
70 | 7 |
80 | |
90 | 1 |
100 | 8 |
(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為 ;
(2)請你將圖②補(bǔ)充完整;
(3)求乙校成績的平均分;
(4)經(jīng)計(jì)算知S甲2=135,S乙2=175,請你根據(jù)這兩個(gè)數(shù)據(jù),對甲、乙兩校成績作出合理評價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“家電下鄉(xiāng)”農(nóng)民得實(shí)惠,村民小鄭購買一臺雙門冰箱,在扣除13%的政府財(cái)政補(bǔ)貼后,再減去商場贈(zèng)送的“家電下鄉(xiāng)”消費(fèi)券100元,實(shí)際只花了1648.7元,那么他購買這臺冰箱節(jié)省了元錢.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E為正方形ABCD的邊BC所在直線上的一點(diǎn),連接AE,過點(diǎn)C作CF⊥AE于F,連接BF.
(1)如圖1,當(dāng)點(diǎn)E在CB的延長線上,且AC=EC時(shí),求證:BF=;
(2)如圖2,當(dāng)點(diǎn)E在線段BC上,且AE平分∠BAC時(shí),求證:AB+BE=AC;
(3)如圖3,當(dāng)點(diǎn)E繼續(xù)往右運(yùn)動(dòng)到BC中點(diǎn)時(shí),過點(diǎn)D作DH⊥AE于H,連接BH.求證:∠BHF=45°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由相同的花盆按一定的規(guī)律組成的形如正多邊形的圖案,其中第1個(gè)圖形一共有6個(gè)花盆,第2個(gè)圖形一共有12個(gè)花盆,第3個(gè)圖形一共有20個(gè)花盆,…則第8個(gè)圖形中花盆的個(gè)數(shù)為( )
A.56 B.64 C.72 D.90
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國是個(gè)缺水國家,目前可利用淡水資源總量僅約為899 000乙億米3 , 其中數(shù)據(jù)899 000用科學(xué)記數(shù)法表示為( )
A.8.99×104
B.0.899×106
C.899×103
D.8.99×105
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)自主招生考試只考數(shù)學(xué)和物理,計(jì)算綜合得分時(shí),按數(shù)學(xué)占60%,物理占40%計(jì)算。已知孔明數(shù)學(xué)得分為95分,綜合得分為93分,那么孔明物理得分是 分。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)P在邊CD上,且與C、D不重合,過點(diǎn)A作AP的垂線與CB的延長線相交于點(diǎn)Q,連接PQ,M為PQ中點(diǎn).
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點(diǎn)P在邊CD上運(yùn)動(dòng),設(shè)DP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com