如圖,請(qǐng)證明在同一三角形中,等邊對(duì)等角.

解:如圖:已知:在△ABC中,AB=AC,
求證:∠B=∠C.
證明:取BC的中點(diǎn)D,連接AD,
∴BD=CD,
在△ABD和△ACD中,
,
∴△ABD≌△ACD(SSS),
∴∠B=∠C.
分析:首先根據(jù)題意作出圖形,將文字題用數(shù)學(xué)語言表達(dá)出來,再取BC的中點(diǎn)D,連接AD,利用SSS的證明方法即可證得△ABD≌△ACD,證得等邊對(duì)等角.
點(diǎn)評(píng):此題考查了等腰三角形的性質(zhì)的證明.此題難度不大,解題的關(guān)鍵是注意文字的證明方法,首先畫出圖形,根據(jù)題意寫出已知求證,然后證明即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•樂山模擬)如圖甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分別為B、P、D,且三個(gè)垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.

(1)證明:AB•CD=PB•PD.
(2)如圖乙,也是一個(gè)“三垂圖”,上述結(jié)論成立嗎?請(qǐng)說明理由.
(3)已知拋物線與x軸交于點(diǎn)A(-1,0),B(3,0),與y軸交于點(diǎn)(0,-3),頂點(diǎn)為P,如圖丙所示,若Q是拋物線上異于A、B、P的點(diǎn),使得∠QAP=90°,求Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•路南區(qū)三模)如圖①,在菱形ABCD和菱形BEFG中,點(diǎn)A、B、E在同一條直線上,P是線段DF的中點(diǎn),連接PG,PC.若
BD
AC
=
GE
BF
=
3

(1)請(qǐng)寫出線段PG與PC所滿足的關(guān)系;并加以證明.
(2)若將圖①中的菱形BEFG饒點(diǎn)B順時(shí)針旋轉(zhuǎn),使菱形BEFG的對(duì)角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題中的其他條件不變,如圖②.那么你在(1)中得到的結(jié)論是否發(fā)生變化?若沒變化,直接寫出結(jié)論,若有變化,寫出變化的結(jié)果.
(3)若將圖①中的菱形BEFG饒點(diǎn)B順時(shí)針旋轉(zhuǎn)任意角度,原問題中的其他條件不變,請(qǐng)猜想(1)中的結(jié)論有沒有變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在等邊中△ABC,D、E分別是AB、AC上的點(diǎn),DE∥BC,如圖(1),然后將△ADE繞A點(diǎn)順時(shí)針旋轉(zhuǎn)120°,使B、A、E三點(diǎn)在同一直線上,得到圖(2),M、N分別是BD、CE的中點(diǎn),連接AM、AN、MN得到圖(3),請(qǐng)解答下列問題:
(1)在圖(2)中,線段BD與線段CE的大小關(guān)系是
BD=CE
BD=CE
;
(2)在圖(3)中,△AMN與△ABC是相似三角形嗎?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分別為B、P、D,且三個(gè)垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.

(1)證明:AB•CD=PB•PD.
(2)如圖乙,也是一個(gè)“三垂圖”,上述結(jié)論成立嗎?請(qǐng)說明理由.
(3)已知拋物線與x軸交于點(diǎn)A(-1,0),B(3,0),與y軸交于點(diǎn)(0,-3),頂點(diǎn)為P,如圖丙所示,若Q是拋物線上異于A、B、P的點(diǎn),使得∠QAP=90°,求Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示 ,在等邊中,D、E分別是AB、AC上的點(diǎn),,如圖(1),然后將繞A點(diǎn)順時(shí)針旋轉(zhuǎn),使B、A、E三點(diǎn)在同一直線上,得到圖(2),M、N分別是BD、CE的中點(diǎn),連接AM、AN、MN得到圖(3),請(qǐng)解答下列問題:

(1)在圖(2)中,線段BD與線段CE的大小關(guān)系是                         ;

(2)在圖(3)中,是相似三角形嗎?請(qǐng)證明你的結(jié)論。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案