【題目】如圖,過點(diǎn)的拋物線的對(duì)稱軸是,點(diǎn)是拋物線與軸的一個(gè)交點(diǎn),點(diǎn)在軸上,點(diǎn)是拋物線的頂點(diǎn).
(1)求、的值;
(2)當(dāng)是直角三角形時(shí),求的面積;
(3)設(shè)點(diǎn)在直線下方且在拋物線上,點(diǎn)、在拋物線的對(duì)稱軸上(點(diǎn)在點(diǎn)的上方),且,過點(diǎn)作軸的平行線交直線于點(diǎn),當(dāng)最大時(shí),請(qǐng)直接寫出四邊形的周長(zhǎng)最小時(shí)點(diǎn)、、的坐標(biāo).
【答案】(1),(2)或,(3),,.
【解析】
(1)把點(diǎn)代入拋物線得,再根據(jù)對(duì)稱軸是,即可求出a、b的值;(2)設(shè)點(diǎn)的坐標(biāo)是,根據(jù)拋物線得頂點(diǎn)的坐標(biāo)是,點(diǎn)的坐標(biāo)是,再根據(jù)是直角三角形分三種情況討論利用勾股定理來(lái)求出相應(yīng)的m值;(3)設(shè)P點(diǎn)(x,),Q(x,),求得 ,當(dāng)時(shí),最大,此時(shí)點(diǎn)坐標(biāo)是,要使四邊形的周長(zhǎng)最小,已求出,為定長(zhǎng),,故只需最小即可,
將點(diǎn)向下平移3個(gè)單位長(zhǎng)度,得點(diǎn),作點(diǎn)關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn),直線與對(duì)稱軸的交點(diǎn)就是符合條件的點(diǎn),此時(shí)四邊形的周長(zhǎng)最小,利用待定系數(shù)法確定過和點(diǎn)的直線,求出與二次函數(shù)對(duì)稱軸的交點(diǎn)即為N點(diǎn),點(diǎn)的坐標(biāo)為,故可求出點(diǎn)、、的坐標(biāo)
解:(1)∵過點(diǎn)的拋物線的對(duì)稱軸是,
∴解之,得
(2)設(shè)點(diǎn)的坐標(biāo)是.由(1)可得拋物線,
∴拋物線的頂點(diǎn)的坐標(biāo)是,點(diǎn)的坐標(biāo)是.
當(dāng)時(shí),有.
∴,解之,得,
∴;
當(dāng)時(shí),有.
∴,解之,得,
∴;
當(dāng)時(shí),有.
∴,此方程無(wú)解.
綜上所述,當(dāng)為直角三角形時(shí),的面積是或.
(3)設(shè)直線過點(diǎn),可得直線.
由(1)可得拋物線,設(shè)P點(diǎn)(x,),Q(x,)
∴ ,
∴當(dāng)時(shí),最大,此時(shí)點(diǎn)坐標(biāo)是.
∴最大時(shí),線段為定長(zhǎng).
∵,∴要使四邊形的周長(zhǎng)最小,只需最小.
將點(diǎn)向下平移3個(gè)單位長(zhǎng)度,得點(diǎn),作點(diǎn)關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn),直線與對(duì)稱軸的交點(diǎn)就是符合條件的點(diǎn),此時(shí)四邊形的周長(zhǎng)最小.
設(shè)直線過點(diǎn)和點(diǎn),則解之,得
∴直線過點(diǎn)和點(diǎn).
解方程組得
∴點(diǎn)的坐標(biāo)為,∴點(diǎn)的坐標(biāo)為,
所以點(diǎn)、、的坐標(biāo)分別為,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,AC=8,將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°到線段AD.△EFG由△ABC沿CB方向平移得到,且直線EF過點(diǎn)D.
(I)求∠1的大。
(Ⅱ)求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋中裝有5個(gè)只有顏色不同的球,其中3個(gè)黃球,2個(gè)黑球.
(1)求從袋中同時(shí)摸出的兩個(gè)球都是黃球的概率;
(2)現(xiàn)將黑球和白球若干個(gè)(黑球個(gè)數(shù)是白球個(gè)數(shù)的2倍)放入袋中,攪勻后,若從袋中摸出一個(gè)球是黑球的概率是,求放入袋中的黑球的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),直線與拋物線交于、兩點(diǎn),其中點(diǎn)的橫坐標(biāo)為2.
(1)求、兩點(diǎn)的坐標(biāo)及直線的函數(shù)表達(dá)式;
(2)是線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的平行線交拋物線于點(diǎn),求線段長(zhǎng)度的最大值;
(3)點(diǎn)是拋物線上的動(dòng)點(diǎn),在軸上是否存在點(diǎn),使、、、四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,寫出所有滿足條件的點(diǎn)坐標(biāo)(請(qǐng)直接寫出點(diǎn)的坐標(biāo),不要求寫過程);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的頂點(diǎn)、分別在平面直角坐標(biāo)系的軸和軸上,且,頂點(diǎn)在第一象限,經(jīng)過矩形對(duì)角線交點(diǎn)的反比例函數(shù)的圖像分別與、交于點(diǎn)、,若的面積是2,則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn)A(-2,-8).
(1)求此拋物線的解析式;
(2)判斷點(diǎn)B(-1,-4)是否在此拋物線上;
(3)求此拋物線上縱坐標(biāo)為-6的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):“頂點(diǎn)在圓上,兩邊與圓相交”,“同弧所對(duì)的圓周角相等”,小明在課后繼續(xù)對(duì)圓外角和圓內(nèi)角進(jìn)行了探究.
下面是他的探究過程,請(qǐng)補(bǔ)充完整:
定義概念:頂點(diǎn)在圓外,兩邊與圓相交的角叫做圓外角,頂點(diǎn)在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M為所對(duì)的一個(gè)圓外角.
(1)請(qǐng)?jiān)趫D2中畫出所對(duì)的一個(gè)圓內(nèi)角;
提出猜想
(2)通過多次畫圖、測(cè)量,獲得了兩個(gè)猜想:一條弧所對(duì)的圓外角______這條弧所對(duì)的圓周角;一條弧所對(duì)的圓內(nèi)角______這條弧所對(duì)的圓周角;(填“大于”、“等于”或“小于”)
推理證明:
(3)利用圖1或圖2,在以上兩個(gè)猜想中任選一個(gè)進(jìn)行證明;
問題解決
經(jīng)過證明后,上述兩個(gè)猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.
(4)如圖3,F,H是∠CDE的邊DC上兩點(diǎn),在邊DE上找一點(diǎn)P使得∠FPH最大.請(qǐng)簡(jiǎn)述如何確定點(diǎn)P的位置.(寫出思路即可,不要求寫出作法和畫圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O的上,點(diǎn)E在⊙O的外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)題意,在橫線上寫出相應(yīng)的函數(shù)關(guān)系式,并判斷y是否為x的反比例函數(shù)(“是”就在后面的空格內(nèi)打“1”,“不是”就在后面的空格內(nèi)打“0”):
(1)長(zhǎng)方形的面積S(cm2)一定,它的長(zhǎng)y(cm)與寬x(cm)之間的關(guān)系式為 ________ .
(2)正方形的對(duì)角線長(zhǎng)y(cm)與它的邊長(zhǎng)x(cm)之間的關(guān)系式為 ________ .
(3)一種商品的單價(jià)為a(元/件),所花費(fèi)的錢數(shù)y(元)與購(gòu)買的件數(shù)x(件)的關(guān)系式為 ________ .
(4)小明的家與學(xué)校相距2400m,他騎自行車上學(xué)的速度v(m/s)與所需時(shí)間t(s)的關(guān)系式為 ________ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com