【題目】如圖,在一張長方形ABCD紙張中,一邊BC折疊后落在對角線BD上,點E為折痕與邊CD的交點,若AB=5,BC=12,求圖中陰影部分的面積.
【答案】圖中陰影部分的面積為.
【解析】試題分析:
如圖,設點C在BD上的對應點為點F,連接EF,則易得EF⊥BD于點F,BF=BC=12,由已知易得BD=13,由此可得DF=1,設CE=x,則EF=x,DE=5-x,在Rt△DEF中由勾股定理建立方程即可求得x的值,從而可得到EF的長,結合BD的長即可求出△BDE的面積了.
試題解析:
設折疊后點C在BD上的對應點為點F,連接EF,
∴EF⊥BD,BF=BC=12,
∴∠DFE=90°,
∵AB=5,AD=BC=12,∠A=90°,
∴BD=,
∴DF=13-12=1,
設CE=x,則EF=CE=x,DE=5-x,
在△DEF中,x2+12=(5-x)2,
解得x=,
∴圖中陰影部分的面積S△BDE=×13×=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D 為∠BAC 的外角平分線上一點并且滿足 BD=CD, 過 D 作 DE⊥AC 于 E,DF⊥AB 交 BA 的延長線于 F,則下列結論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結論有______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,B. C.E在同一條直線上,連結DC.
(1)請在圖2中找出與△ABE全等的三角形,并給予證明;
(2)證明:DC⊥BE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=15 km,CB=10 km,現(xiàn)在要在鐵路AB上建一個土特產品收購站E,使得C,D兩村到E站的距離相等,則E站應建在離A站多少km處?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中,⊙M經過原點O(0,0),點A(,0)與點B(0,﹣1),點D在劣弧OA上,連接BD交x軸于點C,且∠COD=∠CBO.
(1)請直接寫出⊙M的直徑,并求證BD平分∠ABO;
(2)在線段BD的延長線上尋找一點E,使得直線AE恰好與⊙M相切,求此時點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸相交于、兩點,與軸相交于點,點、是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點、.
求點坐標;
求二次函數(shù)的解析式;
根據圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=10°,點P在OB上.以點P為圓心,OP為半徑畫弧,交OA于點P1(點P1與點O不重合),連接PP1;再以點P1為圓心,OP為半徑畫弧,交OB于點P2(點P2與點P不重合),連接P1 P2;再以點P2為圓心,OP為半徑畫弧,交OA于點P3(點P3與點P1不重合),連接P2 P3;……
請按照上面的要求繼續(xù)操作并探究:
∠P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點Pn,若之后就不能再畫出符合要求點Pn+1了,則n=_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com