【題目】為調(diào)查我市民上班時(shí)最常用的交通工具的情況隨機(jī)抽取了部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“A:自行車(chē),B:電動(dòng)車(chē),C:公交車(chē),D:家庭汽車(chē);E.其他”中選擇最常用的一項(xiàng).將所有調(diào)查結(jié)果整理后繪制成如下不完整計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)本次一共調(diào)查了 名市民;扇形統(tǒng)計(jì)圖中B項(xiàng)對(duì)應(yīng)的圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若甲、乙兩人上班時(shí)從A、B、C、D四種交通工具中隨或畫(huà)樹(shù)狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率.
【答案】(1)2000;54;(2)見(jiàn)解析;(3)
【解析】
(1)根據(jù)D組的人數(shù)以及百分比,即可得到被調(diào)查的人數(shù),再根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進(jìn)行計(jì)算即可;
(2)由各選項(xiàng)人數(shù)和等于總?cè)藬?shù)求出C選項(xiàng)的人數(shù),從而補(bǔ)全圖形;
(3)根據(jù)甲、乙兩人上班時(shí)從A、B、C、D四種交通工具中隨機(jī)選擇一種畫(huà)樹(shù)狀圖或列表,即可運(yùn)用概率公式得到甲、乙兩人恰好選擇同一種交通工具上班的概率.
(1)本次調(diào)查的總?cè)藬?shù)為500÷25%=2000人,扇形統(tǒng)計(jì)圖中,B項(xiàng)對(duì)應(yīng)的扇形圓心角是360°×=54°,
故答案為:2000,54;
(2)選擇公交車(chē)人數(shù)為800人,補(bǔ)全條形統(tǒng)計(jì)圖如圖所示
(3)列表如下:
A | B | C | D | |
A | (A,A) | (B,A) | (C,A) | (D,A) |
B | (A,B) | (B,B) | (C,B) | (D,B) |
C | (A,C) | (B,C) | (C,C) | (D,C) |
D | (A,D) | (B,D) | (C,D) | (D,D) |
由表可知共有16種等可能結(jié)果,其中甲、乙兩人恰好選擇同一種交通工具上班的結(jié)果有4種,
所以甲、乙兩人恰好選擇同一種交通工具上班的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,=45°,點(diǎn)在軸上,點(diǎn)是的中點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)兩點(diǎn).
(1)求的值;
(2)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解全校學(xué)生對(duì)電視節(jié)目的喜愛(ài)情況(新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有多少人?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂(lè)節(jié)目的有多少人?
(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學(xué)中選取2名,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:各類(lèi)方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類(lèi)似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類(lèi)方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問(wèn)題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD邊AD上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)A、點(diǎn)D不重合,連結(jié)BE、CE,過(guò)點(diǎn)B作BF∥CE,過(guò)點(diǎn)C作CF∥BE,交點(diǎn)為F點(diǎn),連接AF、DF分別交BC于點(diǎn)G、H,則下列結(jié)論錯(cuò)誤的是( 。
A. GH=BC B. S△BGF+S△CHF=S△BCF
C. S四邊形BFCE=ABAD D. 當(dāng)點(diǎn)E為AD中點(diǎn)時(shí),四邊形BECF為菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,l1∥l2∥l3∥l4∥l5,且l1,l2,l3,l4,l5中相鄰兩條直線之間的距離相等,△ABC的頂點(diǎn)A,B,C分別在l1,l3,l5上,AB交l2于點(diǎn)D,BC交l4于點(diǎn)E,AC交l2于點(diǎn)F,若△DEF的面積是1,則△ABC的面積是( )
A.3. 5B.4C.4.5D.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com