【題目】小明利用剛學過的測量知識來測量學校內一棵古樹的高度。一天下午,他和學習小組的同學帶著測量工具來到這棵古樹前,由于有圍欄保護,他們無法到達古樹的底部B,如圖所示。于是他們先在古樹周圍的空地上選擇一點D,并在點D處安裝了測量器DC,測得古樹的頂端A的仰角為45°;再在BD的延長線上確定一點G,使DG=5米,并在G處的地面上水平放置了一個小平面鏡,小明沿著BG方向移動,當移動帶點F時,他剛好在小平面鏡內看到這棵古樹的頂端A的像,此時,測得FG=2米,小明眼睛與地面的距離EF=1.6米,測傾器的高度CD=0.5米。已知點F、G、DB在同一水平直線上,且EF、CD、AB均垂直于FB,求這棵古樹的高度AB。(小平面鏡的大小忽略不計)

【答案】這棵古樹的高AB18m

【解析】

如圖,過點CCH⊥AB于點H,則CHBDBHCD0.5,繼而可得ABBD0.5,再證明△EFG∽△ABC,根據(jù)相似三角形的性質得,即,由此求得BD長,即可求得AB.

如圖,過點CCH⊥AB于點H,

CHBD,BHCD0.5,

Rt△ACH中,∠ACH45°,

∴AHCHBD,

∴ABAHBHBD0.5

∵EF⊥FB,AB⊥FB,

∴∠EFG∠ABG90°

由題意,易知∠EGF∠AGB

∴△EFG∽△ABG,

,即,

解得:BD17.5,

∴AB=17.50.518(m),

這棵古樹的高AB18m

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABBC,以AB為直徑的⊙OAC交于點D,過DDF⊥BC, 交AB的延長線于E,垂足為F

(1)求證:直線DE⊙O的切線;

(2)AB5AC8時,求cosE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結論,正確的有( )個

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+2與反比例函數(shù)y=的圖象相交于點A(a3),且與x軸相交于點B

1)求該反比例函數(shù)的表達式;

2)寫出直線y=x+2向下平移2個單位的直線解析式,并求出這條直線與雙曲線的交點坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,長、寬均為3,高為8的長方體容器,放置在水平桌面上,里面盛有水,水面高為6,繞底面一棱長進行旋轉傾斜后,水面恰好觸到容器口邊緣,圖2是此時的示意圖,則圖2中水面高度為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,A4,4),By軸正半軸上一點,連接AB,在第一象限作ACAB,∠BAC90°,過點C作直線CDx軸于D,直線CD與直線yx交于點E,且ED5EC,則直線BC解析式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校初級中學數(shù)學興趣小組為了解本校學生年齡情況,隨機調查了本校部分學生的年齡,根據(jù)所調查的學生的年齡(單位:歲),繪制出如下的統(tǒng)計圖和圖,請根據(jù)相關信息,解答下列問題:

1)本次接受調查的學生人數(shù)為_______,圖 的值為 ;

2)求統(tǒng)計的這組學生年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,河的兩岸l1l2互相平行,ABl1上的兩點,C、Dl2上的兩點,某同學在A處測得∠CAB90°,∠DAB30°,再沿AB方向走20米到達點E(即AE20),測得∠DEB60°.求:C,D兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于兩點,,其中.下列四個結論:①;②;③;④,正確的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案