【題目】已知:如圖,DE⊥AC,垂足為點(diǎn)E,∠AGF=∠ABC,∠BFG+∠BDE=180°,
求證:BF⊥AC.
請(qǐng)完成下面的證明的過(guò)程,并在括號(hào)內(nèi)注明理由.
證明:∵∠AGF=∠ABC(已知)
∴FG∥ ( )
∴∠BFG=∠FBC( )
∵∠BFG+∠BDE=180°(已知)
∴∠FBC+∠BDE=180°( )
∴BF∥DE( )
∴∠BFA= (兩直線平行,同位角相等)
∵DE⊥AC(已知)
∴∠DEA=90°( )
∴∠BFA=90°(等量代換)
∴BF⊥AC(垂直的定義)
【答案】BC,同位角相等,兩直線平行,兩直線平行,內(nèi)錯(cuò)角相等,等量代換,同旁?xún)?nèi)角互補(bǔ),兩直線平行,∠DEA,垂直的定義.
【解析】
先根據(jù)得出,故可得出,由可得出,據(jù)此可得出結(jié)論.
解:∵∠AGF=∠ABC(已知)
∴FG∥BC(同位角相等,兩直線平行)
∴∠BFG=∠FBC(兩直線平行,內(nèi)錯(cuò)角相等)
∵∠BFG+∠BDE=180°(已知)
∴∠FBC+∠BDE=180°(等量代換)
∴BF∥DE(同旁?xún)?nèi)角互補(bǔ),兩直線平行)
∴∠BFA=∠DEA(兩直線平行,同位角相等)
∵DE⊥AC(已知)
∴∠DEA=90°(垂直的定義)
∴∠BFA=90°(等量代換)
∴BF⊥AC(垂直的定義).
故答案為:,同位角相等,兩直線平行,兩直線平行,內(nèi)錯(cuò)角相等,等量代換,同旁?xún)?nèi)角互補(bǔ),兩直線平行,,垂直的定義.
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣1,﹣2),B(﹣1,﹣4),C(2,﹣3).
(1)將△ABC先向右平移4個(gè)單位,再向上平移6個(gè)單位,得到△A1B1C1,作出△A1B1C1,線段AC在平移過(guò)程中掃的面積為 ;
(2)作出△A1B1C1關(guān)于y軸對(duì)稱(chēng)的圖形△A2B2C2,則坐標(biāo)C2為 ;
(3)若△ABD與△ABC全等,則點(diǎn)D的坐標(biāo)為 (點(diǎn)C與點(diǎn)D不重合)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在水果銷(xiāo)售旺季,某水果店購(gòu)進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為20元/千克,售價(jià)不低于20元/千克,且不超過(guò)32元/千克,根據(jù)銷(xiāo)售情況,發(fā)現(xiàn)該水果一天的銷(xiāo)售量y(千克)與該天的售價(jià)x(元/千克)滿(mǎn)足如下表所示的一次函數(shù)關(guān)系.
銷(xiāo)售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價(jià)x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價(jià)為23.5元/千克,求當(dāng)天該水果的銷(xiāo)售量.
(2)如果某天銷(xiāo)售這種水果獲利150元,那么該天水果的售價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AC=BC<AB.若∠1、∠2分別為∠ABC、∠ACB的外角,則下列角度關(guān)系何者正確( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BC=3,D為AC延長(zhǎng)線上一點(diǎn),AC=3CD,過(guò)點(diǎn)D作DH∥AB,交BC的延長(zhǎng)線于點(diǎn)H.
(1)求BD·cos∠HBD的值;
(2)若∠CBD=∠A,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=90°,點(diǎn) D,E分別在AB,BC上,且AD=BE,BD=AC,過(guò)E作EF⊥AB于F.
(1)求證:∠FED=∠CED;
(2)若 BF=,直接寫(xiě)出 CE的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣3,0),點(diǎn) B是 y軸正半軸上一動(dòng)點(diǎn),點(diǎn)C、D在 x正半軸上.
(1)如圖,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的兩條角平分線,且BD、CE交于點(diǎn)F,直接寫(xiě)出CF的長(zhǎng)_____.
(2)如圖,△ABD是等邊三角形,以線段BC為邊在第一象限內(nèi)作等邊△BCQ,連接 QD并延長(zhǎng),交 y軸于點(diǎn) P,當(dāng)點(diǎn) C運(yùn)動(dòng)到什么位置時(shí),滿(mǎn)足 PD=DC?請(qǐng)求出點(diǎn)C的坐標(biāo);
(3)如圖,以AB為邊在AB的下方作等邊△ABP,點(diǎn)B在 y軸上運(yùn)動(dòng)時(shí),求OP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是某城市街道示意圖,已知與均是等邊三角形(即三條邊都相等,三個(gè)角都相等的三角形),點(diǎn)為公交車(chē)?空,且點(diǎn)在同一條直線上.
(1)圖中與全等嗎?請(qǐng)說(shuō)明理由;
(2)連接,寫(xiě)出與的大小關(guān)系;
(3)公交車(chē)甲從出發(fā),按照的順序到達(dá)站;公交車(chē)乙從出發(fā),按照的順序到達(dá)站.若甲,乙兩車(chē)分別從兩站同時(shí)出發(fā),在各站?康臅r(shí)間相同,兩車(chē)的平均速度也相同,則哪一輛公交車(chē)先到達(dá)指定站?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用同樣規(guī)格的黑白兩種顏色的正方形,按如圖①的方式拼圖,請(qǐng)根據(jù)圖中的信息完成下列的問(wèn)題
(1)在圖②中用了___________塊黑色正方形,在圖③中用了_____________塊黑色正方形;
(2)按如圖的規(guī)律繼續(xù)鋪下去,那么第個(gè)圖形要用____________塊黑色正方形;
(3)如果有足夠多的白色正方形,能不能恰好用完塊黑色正方形,拼出具有以上規(guī)律的圖形?如果可以請(qǐng)說(shuō)明它是第幾個(gè)圖形;如果不能,說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com