【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則點(diǎn)B2018的坐標(biāo)為_____.
【答案】(6054,2)
【解析】分析:
分析題意和圖形可知,點(diǎn)B1、B3、B5、……在x軸上,點(diǎn)B2、B4、B6、……在第一象限內(nèi),由已知易得AB=,結(jié)合旋轉(zhuǎn)的性質(zhì)可得OA+AB1+B1C2=6,從而可得點(diǎn)B2的坐標(biāo)為(6,2),同理可得點(diǎn)B4的坐標(biāo)為(12,2),即點(diǎn)B2相當(dāng)于是由點(diǎn)B向右平移6個(gè)單位得到的,點(diǎn)B4相當(dāng)于是由點(diǎn)B2向右平移6個(gè)單位得到的,由此即可推導(dǎo)得到點(diǎn)B2018的坐標(biāo).
詳解:
∵在△AOB中,∠AOB=90°,OA=,OB=2,
∴AB=,
∴由旋轉(zhuǎn)的性質(zhì)可得:OA+AB1+B1C2=OA+AB+OB=6,C2B2=OB=2,
∴點(diǎn)B2的坐標(biāo)為(6,2),
同理可得點(diǎn)B4的坐標(biāo)為(12,2),
由此可得點(diǎn)B2相當(dāng)于是由點(diǎn)B向右平移6個(gè)單位得到的,點(diǎn)B4相當(dāng)于是由點(diǎn)B2向右平移6個(gè)單位得到,
∴點(diǎn)B2018相當(dāng)于是由點(diǎn)B向右平移了:個(gè)單位得到的,
∴點(diǎn)B2018的坐標(biāo)為(6054,2).
故答案為:(6054,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD與BE相交于點(diǎn)P,則∠BPD的度數(shù)為( )
A. 120° B. 125° C. 130° D. 155°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥DC,∠B=90°,連接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,則AB=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(jí)(1)班開展了為期一周的“敬老愛親”社會(huì)活動(dòng),并根據(jù)學(xué)生做家務(wù)的時(shí)間來評(píng)價(jià)他們?cè)诨顒?dòng)中的表現(xiàn),老師調(diào)查了全班50名學(xué)生在這次活動(dòng)中做家務(wù)的時(shí)間,并將統(tǒng)計(jì)的時(shí)間(單位:小時(shí))分成5組: A.0.5≤x<1 B.1≤x<1.5 C.1.5≤x<2 D.2≤x<2.5 E.2.5≤x<3;并制成兩幅不完整的統(tǒng)計(jì)圖(如圖):
請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)這次活動(dòng)中學(xué)生做家務(wù)時(shí)間的中位數(shù)所在的組是;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該班的小明同學(xué)這一周做家務(wù)2小時(shí),他認(rèn)為自己做家務(wù)的時(shí)間比班里一半以上的同學(xué)多,你認(rèn)為小明的判斷符合實(shí)際嗎?請(qǐng)用適當(dāng)?shù)慕y(tǒng)計(jì)知識(shí)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,AD=4,E為AB上一點(diǎn),AE=1,M為射線AD上一動(dòng)點(diǎn),AM=a(a為大于0的常數(shù)),直線EM與直線CD交于點(diǎn)F,過點(diǎn)M作MG⊥EM,交直線BC于點(diǎn)G.
(1)若M為邊AD中點(diǎn),求證△EFG是等腰三角形;
(2)若點(diǎn)G與點(diǎn)C重合,求線段MG的長(zhǎng);
(3)請(qǐng)用含a的代數(shù)式表示△EFG的面積S,并指出S的最小整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯子斜靠在與地面垂直(垂足為O)的墻上,當(dāng)梯子位于AB位置時(shí),它與地面所成的角∠ABO=60°;當(dāng)梯子底端向右滑動(dòng)1m(即BD=1m)到達(dá)CD位置時(shí),它與地面所成的角∠CDO=51°18′,求梯子的長(zhǎng). (參考數(shù)據(jù):sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組在數(shù)學(xué)課外活動(dòng)中,研究三角形和正方形的性質(zhì)時(shí),做了如下探究:在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖①,當(dāng)點(diǎn)D在線段BC上時(shí)。
①BC與CF的位置關(guān)系為:___;
②BC,CD,CF之間的數(shù)量關(guān)系為:___;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖②,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明;
(3)拓展延伸
如圖③,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=,CD=BC,請(qǐng)求出GE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC中,AB=AC,∠BAC=90°.
(1)如圖(1),CD平分∠ACB交AB于點(diǎn)D,BE⊥CD于點(diǎn)E,延長(zhǎng)BE、CA相交于點(diǎn)F,請(qǐng)猜想線段BE與CD的數(shù)量關(guān)系,并說明理由.
(2)如圖(2),點(diǎn)F在BC上,∠BFE=∠ACB,BE⊥FE于點(diǎn)E,AB與FE交于點(diǎn)D,F(xiàn)H∥AC交AB于H,延長(zhǎng)FH、BE相交于點(diǎn)G,求證:BE=FD;
(3)如圖(3),點(diǎn)F在BC延長(zhǎng)線上,∠BFE=∠ACB,BE⊥FE于點(diǎn)E,F(xiàn)E交BA延長(zhǎng)線于點(diǎn)D,請(qǐng)你直接寫出線段BE與FD的數(shù)量關(guān)系(不需要證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com