【題目】某數(shù)學(xué)興趣小組在數(shù)學(xué)課外活動(dòng)中,研究三角形和正方形的性質(zhì)時(shí),做了如下探究:在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖①,當(dāng)點(diǎn)D在線段BC上時(shí)。
①BC與CF的位置關(guān)系為:___;
②BC,CD,CF之間的數(shù)量關(guān)系為:___;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖②,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明;
(3)拓展延伸
如圖③,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),延長BA交CF于點(diǎn)G,連接GE.若已知AB=,CD=BC,請(qǐng)求出GE的長。
【答案】(1)①垂直;②BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC;(3).
【解析】
(1)①根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;②由正方形ADEF的性質(zhì)可推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)得到CF=BD,∠ACF=∠ABD,根據(jù)余角的性質(zhì)即可得到結(jié)論;
(2)根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)以及等腰直角三角形的角的性質(zhì)可得到結(jié)論.
(3)根據(jù)等腰直角三角形的性質(zhì)得到BC=AB=4,AH=BC=2,求得DH=3,根據(jù)正方形的性質(zhì)得到AD=DE,∠ADE=90°,根據(jù)矩形的性質(zhì)得到NE=CM,EM=CN,由角的性質(zhì)得到∠ADH=∠DEM,根據(jù)全等三角形的性質(zhì)得到EM=DH=3,DM=AH=2,等量代換得到CN=EM=3,EN=CM=3,根據(jù)等腰直角三角形的性質(zhì)得到CG=BC=4,根據(jù)勾股定理即可得到結(jié)論.
(1)①正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90,
∴∠BAD=∠CAF,
在△DAB與△FAC中,
AD=AF,∠BAD=∠CAF,AB=AC,
∴△DAB≌△FAC(SAS),
∴∠B=∠ACF,
∴∠ACB+∠ACF=90°,即BC⊥CF;
故答案為:垂直;
②△DAB≌△FAC,
∴CF=BD,
∵BC=BD+CD,
∴BC=CF+CD;
故答案為:BC=CF+CD;
(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.
∵正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB與△FAC中,
AD=AF,∠BAD=∠CAF,AB=AC,
∴△DAB≌△FAC(SAS),
∴∠ABD=∠ACF,
∵∠BAC=90°,AB=AC,
∴∠ACB=∠ABC=45°.
∴∠ABD=180°45=135°,
∴∠BCF=∠ACF∠ACB=135°45°=90°,
∴CF⊥BC.
∵CD=DB+BC,DB=CF,
∴CD=CF+BC.
(3)過A作AH⊥BC于H,過E作EM⊥BD于M,EN⊥CF于N,
∵∠BAC=90,AB=AC,
∴BC=AB=4,AH=BC=2,
∴CD=BC=1,CH=BC=2,
∴DH=3,
由(2)證得BC⊥CF,CF=BD=5,
∵四邊形ADEF是正方形,
∴AD=DE,∠ADE=90,
∵BC⊥CF,EM⊥BD,EN⊥CF,
∴四邊形CMEN是矩形,
∴NE=CM,EM=CN,
∵∠AHD=∠ADC=∠EMD=90,
∴∠ADH+∠EDM=∠EDM+∠DEM=90,
∴∠ADH=∠DEM,
在△ADH與△DEM中,
∠ADH=∠DEM,∠AHD=∠DME,AD=DE,
∴△ADH≌△DEM(AAS),
∴EM=DH=3,DM=AH=2,
∴CN=EM=3,EN=CM=3,
∵∠ABC=45,
∴∠BGC=45,
∴△BCG是等腰直角三角形,
∴CG=BC=4,
∴GN=1,
∴EG=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣3x﹣k=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)請(qǐng)選擇一個(gè)k的負(fù)整數(shù)值,并求出方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則點(diǎn)B2018的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB的頂點(diǎn)O與原點(diǎn)重合,直角頂點(diǎn)A在x軸上,頂點(diǎn)B的坐標(biāo)為(4,3),直線與x軸、y軸分別交于點(diǎn)D、E,交OB于點(diǎn)F.
(1)寫出圖中的全等三角形及理由;
(2)求OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明所在學(xué)校的旗桿BD高約為13米,距離旗桿20米處剛好有一棵高約為3米的香樟樹AE.活動(dòng)課上,小明有意在旗桿與香樟樹之間的連線上來回踱步,發(fā)現(xiàn)有一個(gè)位置到旗桿頂部與樹頂?shù)木嚯x相等.請(qǐng)你求出該位置與旗桿之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED為菱形;
(2)連接AE、BE,AE與BE相等嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次科技活動(dòng)中,小明進(jìn)行了模擬雷達(dá)掃描實(shí)驗(yàn).如圖,表盤是△ABC,其中AB=AC,∠BAC=120°,在點(diǎn)A處有一束紅外光線AP,從AB開始,繞點(diǎn)A逆時(shí)針勻速旋轉(zhuǎn),每秒鐘旋轉(zhuǎn)15°,到達(dá)AC后立即以相同旋轉(zhuǎn)速度返回AB,到達(dá)后立即重復(fù)上述旋轉(zhuǎn)過程.小明通過實(shí)驗(yàn)發(fā)現(xiàn),光線從AB處旋轉(zhuǎn)開始計(jì)時(shí),旋轉(zhuǎn)1秒,此時(shí)光線AP交BC邊于點(diǎn)M,BM的長為(20 ﹣20)cm.
(1)求AB的長;
(2)從AB處旋轉(zhuǎn)開始計(jì)時(shí),若旋轉(zhuǎn)6秒,此時(shí)光線AP與BC邊的交點(diǎn)在什么位置?若旋轉(zhuǎn)2014秒,交點(diǎn)又在什么位置?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人以相同路線前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí).圖中l(wèi)甲、l乙分別表示甲、乙兩人前往目的地所走的路程S(km)隨時(shí)間t(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達(dá);②甲的平均速度為15千米/小時(shí);③乙走了8km后遇到甲;④乙出發(fā)6分鐘后追上甲.其中正確的有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正反比例函數(shù)的圖像交于、兩點(diǎn),過第二象限的點(diǎn)作軸,點(diǎn)的橫坐標(biāo)為,且,點(diǎn)在第四象限
(1)求這兩個(gè)函數(shù)解析式;
(2)求這兩個(gè)函數(shù)圖像的交點(diǎn)坐標(biāo);
(3)若點(diǎn)在坐標(biāo)軸上,聯(lián)結(jié)、,寫出當(dāng)時(shí)的點(diǎn)坐標(biāo)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com