【題目】如圖,已知矩形ABCD的一條邊AD=8 cm,點P在CD邊上,AP=AB, PC=4cm,連結PB.點M從點P出發(fā),沿PA方向勻速運動(點M與點P、A不重合);點N同時從點B出發(fā),沿線段AB的延長線勻速運動,連結MN交PB于點F.
(1)求AB的長;
(2)若點M的運動速度為1cm/s,點N的運動速度為2cm/s,△AMN的面積為S,點M和點N的運動時間為,求S與的函數(shù)關系式,并求S的最大值;
(3)若點M和點N的運動速度相等,作ME⊥BP于點E.試問當點M、N在運動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度.
【答案】(1)10;(2)時,S取得最大值為45.(3)點M、N在運動過程中,線段EF的長度不變,長度為.
【解析】試題分析:(1)設AB=x,根據(jù)折疊可得AP=CD=x,DP=CD-CP=x-4,利用勾股定理,在Rt△ADP中,AD2+DP2=AP2,即82+(x-4)2=x2,即可解答;(2)過點M作MG⊥AN于點G,則∠AGM=∠D=90°,所以∠APD=∠MAG,則Rt△APD∽Rt△MAG,所以,即,可得出, 又因為,所以 ,則當時,S取得最大值為45;(3)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)MH⊥PQ,得出HQ= PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,最后代入HF=PB即可得出線段EF的長度不變;
試題解析:
(1)設AB= ,則AP= ,DP= ,
在Rt△ADP中, 由勾股定理得:
,
解得: ,
∴AB =10.
(2)過點M作MG⊥AN于點G,則∠AGM=∠D=90°,
∵DC∥AB,
∴∠APD=∠MAG,
∴Rt△APD∽Rt△MAG,
∴,
∴,
∴,
∵,
∴
∴當時,S取得最大值為45.
(3)作MQ∥AN,交PB于點Q,
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP,∠ABP=∠MQP,
∴∠APB=∠MQP,
∴MP=MQ,
∵ME⊥PQ,
∴PE=EQ=PQ,
∵BN=PM,PM=MQ,
∴BN=QM,
∵MQ∥AN,∴∠QMF=∠BNF,
在△MFQ和△NFB中,
∵,
∴△MFQ≌△NFB,
∴QF=BF,
∴QF=QB,
∴EF=EQ+QF=PQ+QB=PB,
在Rt△PBC中,
∵PC=4,BC=8,
∴,
∴EF=PB=,
∴點M、N在運動過程中,線段EF的長度不變,長度為.
科目:初中數(shù)學 來源: 題型:
【題目】每年11月的最后一個星期四是感恩節(jié),小龍調(diào)查了初三年級部分同學在感恩節(jié)當天將以何種方式表達感謝幫助過自己的人.他將調(diào)查結果分為如下四類:A類﹣﹣當面致謝;B類﹣﹣打電話;C類﹣﹣發(fā)短信息或微信;D類﹣﹣寫書信.他將調(diào)查結果繪制成如圖不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
請你根據(jù)圖中提供的信息完成下列各題:
(1)補全條形統(tǒng)計圖;
(2)在A類的同學中,有3人來自同一班級,其中有1人學過主持.現(xiàn)準備從他們3人中隨機抽出兩位同學主持感恩節(jié)主題班會課,請你用樹狀圖或表格求出抽出的兩人都沒有學過主持的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次青年歌手演唱比賽中,10位評委給某位歌手的打分分別是:9.5,9.8,9.4,9.5,9.6,9.3,9.6,9.4,9.3,9.4,則這組數(shù)據(jù)的眾數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定:符號“&”為選擇兩數(shù)中較大數(shù)的運算,“◎”為選擇兩數(shù)中較小數(shù)的運算,則(4◎3)×(2&5)的結果為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按科學記算器MODE MODE 1,使顯示器顯示D后,求sin90°的值,以下按鍵順序正確的是( 。
A.sin , 9=
B.9,sin=
C.sin , 9,0=
D.9,0=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,兩個等邊△ABD,△CBD的邊長均為2,將△ABD沿AC方向向右平移k個單位到△A′B′D′的位置,得到圖2,則下列說法:①陰影部分的周長為4;②當k=1時,圖中陰影部分為正六邊形;③若陰影部分和空白部分的面積相等,則k= . 其中正確的說法是( 。
A.①
B.①②
C.②③
D.①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com