【題目】閱讀理解下面內(nèi)容,并解決問題:
善于思考的小明在學(xué)習(xí)《實(shí)數(shù)》一章后,自己探究出了下面的兩個結(jié)論:
①,,和都是9×4的算術(shù)平方根,
而9×4的算術(shù)平方根只有一個,所以=.
②,,和都是9×16的算術(shù)平方根,
而9×16的算術(shù)平方根只有一個,所以 .
請解決以下問題:
(1)請仿照①幫助小明完成②的填空,并猜想:一般地,當(dāng)a≥0,b≥0時(shí),與、之間的大小關(guān)系是怎樣的?
(2)再舉一個例子,檢驗(yàn)?zāi)悴孪氲慕Y(jié)果是否正確.
(3)運(yùn)用以上結(jié)論,計(jì)算:的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB為等腰三角形,頂點(diǎn)A的坐標(biāo)(2, ),底邊OB在x軸上.將△AOB繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)一定角度后得△A′O′B,點(diǎn)A的對應(yīng)點(diǎn)A′在x軸上,請你求出點(diǎn)O′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,OM是∠AOC的角平分線,ON是∠BOC的角平分線;
(1)當(dāng)∠BOC=40°時(shí),求∠MON的大小?
(2)當(dāng)∠BOC的大小發(fā)生變化時(shí),∠MON的大小是否發(fā)生改變?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點(diǎn)C作CF平行于BA交PQ于點(diǎn)F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若AD=3,AE=5,則菱形AECF的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動,同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時(shí),另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍(lán)球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為 .
(1)求口袋中黃球的個數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個小球(不放回),再隨機(jī)摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分,摸到藍(lán)球得2分(每次摸后放回),乙同學(xué)在一次摸球游戲中,第一次隨機(jī)摸到一個紅球第二次又隨機(jī)摸到一個藍(lán)球,若隨機(jī)再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中, B(0,8),D(10,0),一次函數(shù)y=x+的圖象過C(16,n),與x軸交于A點(diǎn)。
(1)求證:四邊形ABCD為平行四邊形;
(2)將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)得△A1OB1,問:能否使以點(diǎn)O、A1、D、B1為頂點(diǎn)的四邊形是平行四邊形?若能,求點(diǎn)A1的坐標(biāo);若不能,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
小明遇到一個問題:5個同樣大小的正方形紙片排列形式如圖1所示,將它們分割后拼接成一個新的正方形.他的做法是:按圖2所示的方法分割后,將三角形紙片①繞AB的中點(diǎn)O旋轉(zhuǎn)至三角形紙片②處,以此方法繼續(xù)操作,即可拼成一個新的正方形DEFG.
請你參考小明的做法解決下列問題:
(1)現(xiàn)有5個形狀,大小相同的矩形紙片,排列形式如圖3所示.請將其分割后拼接成一個平行四邊形,要求:在圖3中畫出并指明拼接成的平行四邊形(畫出一個符合條件的平行四邊形即可).
(2)如圖4,在面積為2的平行四邊形ABCD中,點(diǎn)E、F、G、H分別是邊AB、BC、CD、DA的中點(diǎn),分別連結(jié)AF、BG、CH、DE,所得□MNPQ面積為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com