【題目】如圖,有一座圓弧形拱橋,橋下水面寬度AB12m,拱高CD4m

1)求拱橋的半徑;

2)有一艘寬5m的貨船,船艙頂部為長方形,并高出水面3.6m,求此貨船是否能順利通過拱橋?

【答案】1r6.5;(2)此貨船能不順利通過這座拱橋,見解析

【解析】

1)根據(jù)垂徑定理和勾股定理求解;

2)連接ON,OB,通過求距離水面2米高處即ED長為2時,橋有多寬即MN的長與貨船頂部的3米做比較來判定貨船能否通過.先根據(jù)半弦,半徑和弦心距構(gòu)造直角三角形求出半徑的長,再根據(jù)RtOEN中勾股定理求出EN的長,從而求得MN的長.

解:(1)如圖,連接ON,OB

OCAB,

DAB中點,

AB12m,

BDAB6m

又∵CD4m,

設(shè)OBOCONr,則OD=(r4m

RtBOD中,根據(jù)勾股定理得:r2=(r42+62,

解得:r6.5

2)∵CD4m,船艙頂部為長方形并高出水面AB2m,

CE43.60.4m),

OErCE6.50.46.1m),

RtOEN中,EN2ON2OE26.526.125.04m2),

ENm).

MN2EN≈4.48m5m

∴此貨船能不順利通過這座拱橋.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線Ly=x+2x軸、y軸分別交于AB兩點,在y軸上有一點N04),動點MA點以每秒1個單位的速度勻速沿x軸向左移動.

1)點A的坐標:_____;點B的坐標:_____;

2)求NOM的面積SM的移動時間t之間的函數(shù)關(guān)系式;

3)在y軸右邊,當t為何值時,NOMAOB,求出此時點M的坐標;

4)在(3)的條件下,若點G是線段ON上一點,連結(jié)MG,MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點D是直線AB上一動點(不包含點A,B),過點BBE⊥CD于點E,連接EA

1)如圖1,當點D在線段AB上時,直接寫出線段CE,BE,AE的數(shù)量關(guān)系:______

2)如圖2,當點D在線段AB的延長線上時,判斷線段CE,BEAE的數(shù)量關(guān)系,并加以證明.

3)如圖3,當點D在線段BA的延長線上時,并將已知條件中的“AB=AC”改成;,其他條件不變,若CE=1,,請直接寫出線段BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某出租公司有若干輛同一型號的貨車對外出租,每輛貨車的日租金實行淡季、旺季兩種價格標準,旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計,淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.

1)該出租公司這批對外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?

2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時,該出租公司的日租金總收入最高?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,∠ADB=∠CDB=∠BAC45°,結(jié)論:①∠ABC90°,②ABBC,③AD2+DC22AB2,④AD+DCBD,其中正確的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB2,點ECD的中點,連接AE,將△ADE沿AE折疊至△AHE,連接BH,延長AEBH交于點F;BF,CD交于點G,則FG=_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標為(﹣23),點B的坐標為(4,n).

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)在x軸上是否存在點P,使△APC是直角三角形?若存,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立平面直角坐標系,一條圓弧經(jīng)過格點、,若該圓弧所在圓的圓心為點,請你利用網(wǎng)格圖回答下列問題:

1)圓心的坐標為_____

2)若扇形是一個圓錐的側(cè)面展開圖,求該圓錐底面圓的半徑長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將△ABC繞點C旋轉(zhuǎn)180°得到△FEC

1)試猜想AEBF有何關(guān)系?說明理由.

2)若△ABC的面積為3cm2,求四邊形ABFE的面積.

查看答案和解析>>

同步練習冊答案