【題目】在矩形ABCD中,AB=6cm,BC=12cm,點P從點A出發(fā),沿AB邊向點B以每秒1cm的速度移動,同時點Q從點B出發(fā)沿BC邊向點C以每秒2cm的速度移動P、Q兩點在分別到達B、C兩點后就停止移動,設(shè)兩點移動的時間為t秒,回答下列問題:
(1)如圖1,當(dāng)t為幾秒時,△PBQ的面積等于5cm2?
(2)如圖2,當(dāng)t=秒時,試判斷△DPQ的形狀,并說明理由;
(3)如圖3,以Q為圓心,PQ為半徑作⊙Q.
①在運動過程中,是否存在這樣的t值,使⊙Q正好與四邊形DPQC的一邊(或邊所在的直線)相切?若存在,求出t值;若不存在,請說明理由;
②若⊙Q與四邊形DPQC有三個公共點,請直接寫出t的取值范圍。
【答案】(1)1秒或5秒(2)直角三角形(3)①t=0或t=﹣18+12②0<t<6﹣18
【解析】試題分析:(1)由題意可知PA=t,BQ=2t,從而得到PB=6﹣t,BQ=2t,然后根據(jù)△PQB的面積=5cm2列方程求解即可;
(2)由t=,可求得AP=,QB=3,PB=,CQ=9,由勾股定理可證明DQ2+PQ2=PD2,由勾股定理的逆定理可知△DPQ為直角三角形;
(3)①當(dāng)t=0時,點P與點A重合時,點B與點Q重合,此時圓Q與PD相切;當(dāng)⊙Q正好與四邊形DPQC的DC邊相切時,由圓的性質(zhì)可知QC=QP,然后依據(jù)勾股定理列方程求解即可;
②先求得⊙Q與四邊形DPQC有兩個公共點時t的值,然后可確定出t的取值范圍.
試題解析:(1)∵當(dāng)運動時間為t秒時,PA=t,BQ=2t,
∴PB=6﹣t,BQ=2t.
∵△PBQ的面積等于5cm2,
∴PBBQ=(6﹣t)2t.
∴.
解得:t1=1,t2=5.
答:當(dāng)t為1秒或5秒時,△PBQ的面積等于5cm2.
(2)△DPQ的形狀是直角三角形.
理由:∵當(dāng)t=秒時,AP=,QB=3,
∴PB=6﹣=,CQ=12﹣3=9.
在Rt△PDA中,由勾股定理可知:PD2=DA2+PA2=122+()2=.
同理:在Rt△PBQ和Rt△DCQ中由勾股定理可得:DQ2=117,PQ2=.
∵117+=,
∴DQ2+PQ2=PD2.
所以△DPQ的形狀是直角三角形.
(3span>)①(Ⅰ)由題意可知圓Q與AB、BC不相切.
(Ⅱ)如圖1所示:當(dāng)t=0時,點P與點A重合時,點B與點Q重合.
∵∠DAB=90°,
∴∠DPQ=90°.
∴DP⊥PQ.
∴DP為圓Q的切線.
(Ⅲ)當(dāng)⊙Q正好與四邊形DPQC的DC邊相切時,如圖2所示.
由題意可知:PB=6﹣t,BQ=2t,PQ=CQ=12﹣2t.
在Rt△PQB中,由勾股定理可知:PQ2=PB2+QB2,即(6﹣t)2+(2t)2=(12﹣2t)2.
解得:t1=﹣18+12,t2=﹣18﹣12(舍去).
綜上所述可知當(dāng)t=0或t=﹣18+12時,⊙Q與四邊形DPQC的一邊相切.
②(Ⅰ)當(dāng)t=0時,如圖1所示:⊙Q與四邊形DPQC有兩個公共點;
(Ⅱ)如圖3所示:當(dāng)圓Q經(jīng)過點D時,⊙Q與四邊形DPQC有兩個公共點.
由題意可知:PB=6﹣t,BQ=2t,CQ=12﹣2t,DC=6.
由勾股定理可知:DQ2=DC2+CQ2=62+(12﹣2t)2,PQ2=PB2+QB2=(6﹣t)2+(2t)2.
∵DQ=PQ,
∴DQ2=PQ2,即62+(12﹣2t)2=(6﹣t)2+(2t)2.
整理得:t2+36t﹣144=0.
解得:t1=6﹣18,t2=﹣6﹣18(舍去).
∴當(dāng)0<t<6﹣18時,⊙Q與四邊形DPQC有三個公共點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算結(jié)果中等于3的數(shù)是( )
A.|﹣7|+|+4|
B.|(﹣7)+(+4)|
C.|+7|+|﹣4|
D.|(﹣7)﹣(﹣3)|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使三角形AMN周長最小時,則∠AMN+∠ANM的度數(shù)為( )
A. 80° B. 90° C. 100° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣2x+2+m2=0的根的情況是( )
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.沒有實數(shù)根
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊△ABC中,點D、E、F分別為AB、BC、CA上的點,且AD=BE=CF.
(1)△DEF是__________三角形;
(2)如圖2,M為線段BC上一點,連接FM,
在FM的右側(cè)作等邊△FMN,連接DM、EN.求證:DM=EN;
(3)如圖3,將上題中“M為線段BC上一點”改為“點M為CB延長線上一點”,其余條件不變,求證:DM=EN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2
(1)求實數(shù)k的取值范圍。
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2,求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師做了個長方形教具,其中一邊長為2a+b,另一邊長為a﹣b,則該長方形的面積為( 。
A.6a+b
B.2a2﹣ab﹣b2
C.3a
D.10a﹣b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等邊△ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的大。
(2)若CD=3,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com