勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:

將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2

證明:連結(jié)DB,過點D作BC邊上的高DF,則DF=EC=b﹣a

∵S四邊形ADCB=SACD+SABC=b2+ab.

又∵S四邊形ADCB=SADB+SDCB=c2+a(b﹣a)

b2+ab=c2+a(b﹣a)

∴a2+b2=c2

請參照上述證法,利用圖2完成下面的證明.

將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2


【考點】勾股定理的證明.

【分析】首先連結(jié)BD,過點B作DE邊上的高BF,則BF=b﹣a,表示出S五邊形ACBED,兩者相等,整理即可得證.

【解答】證明:連結(jié)BD,過點B作DE邊上的高BF,則BF=b﹣a,

∵S五邊形ACBED=SACB+SABE+SADE=ab+b2+ab,

又∵S五邊形ACBED=SACB+SABD+SBDE=ab+c2+a(b﹣a),

ab+b2+ab=ab+c2+a(b﹣a),

∴a2+b2=c2

【點評】此題考查了勾股定理的證明,用兩種方法表示出五邊形ACBED的面積是解本題的關(guān)鍵.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


正多邊形的一個內(nèi)角等于144°,則該多邊形是正(     )邊形.

A.8       B.9       C.10     D.11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,已知:△ABC中,AB=AC,M是BC的中點,D、E分別是AB、AC邊上的點,且BD=CE.求證:MD=ME.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


等腰三角形的兩邊長分別為2cm和4cm,則這個三角形的周長為__________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.

(1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△A′B′C′;

(2)在直線l上找一點P(在答題紙上圖中標出),使PB+PC的長最短,這個最短長度的平方值是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖所示,是一塊三角形的草坪,現(xiàn)要在草坪上建一涼亭供大家休息,要使涼亭到草坪三條邊的距離相等,涼亭的位置應(yīng)選在(     )

A.△ABC 的三條中線的交點

B.△ABC 三邊的中垂線的交點

C.△ABC 三條角平分線的交點

D.△ABC 三條高所在直線的交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在△ABC中,∠A=50°,當∠B的度數(shù)=__________,△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


下列各條件中,不能作出惟一三角形的是(     )

A.已知兩邊和夾角     B.已知兩角和夾邊

C.已知兩邊和其中一邊的對角 D.已知三邊

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


材料閱讀:

在小學,我們了解到正方形的每個角都是90°,每條邊都相等;本學期,我們通過折紙得到定理:直角三角形的斜邊上的中線等于斜邊的一半;同時探討得知,在直角三角形中,30°的角所對的直角邊是斜邊的一半.

(1)如圖1,在等邊三角形△ABC內(nèi)有一點P,且PA=2,PB=,PC=1.求∠BPC的度數(shù)和等邊△ABC的邊長.

聰聰同學的思路是:將△BPC繞點B逆時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).

連接PP′.根據(jù)聰聰同學的思路,可以證明△BPP′為等邊三角形,又可以證明△ABP′≌△CBP,所以AP′=PC=1,根據(jù)勾股定理逆定理可證出△APP′為直角三角形,故此∠BPC=__________°;同時,可以說明∠BPA=90°,在Rt△APB中,利用勾股定理,可以求出等邊△ABC的邊AB=__________

(2)請你參考聰聰同學的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長.

查看答案和解析>>

同步練習冊答案