勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連結(jié)DB,過點D作BC邊上的高DF,則DF=EC=b﹣a
∵S四邊形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四邊形ADCB=S△ADB+S△DCB=c2+a(b﹣a)
∴b2+ab=c2+a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2.
科目:初中數(shù)學 來源: 題型:
如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△A′B′C′;
(2)在直線l上找一點P(在答題紙上圖中標出),使PB+PC的長最短,這個最短長度的平方值是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖所示,是一塊三角形的草坪,現(xiàn)要在草坪上建一涼亭供大家休息,要使涼亭到草坪三條邊的距離相等,涼亭的位置應(yīng)選在( )
A.△ABC 的三條中線的交點
B.△ABC 三邊的中垂線的交點
C.△ABC 三條角平分線的交點
D.△ABC 三條高所在直線的交點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
材料閱讀:
在小學,我們了解到正方形的每個角都是90°,每條邊都相等;本學期,我們通過折紙得到定理:直角三角形的斜邊上的中線等于斜邊的一半;同時探討得知,在直角三角形中,30°的角所對的直角邊是斜邊的一半.
(1)如圖1,在等邊三角形△ABC內(nèi)有一點P,且PA=2,PB=,PC=1.求∠BPC的度數(shù)和等邊△ABC的邊長.
聰聰同學的思路是:將△BPC繞點B逆時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).
連接PP′.根據(jù)聰聰同學的思路,可以證明△BPP′為等邊三角形,又可以證明△ABP′≌△CBP,所以AP′=PC=1,根據(jù)勾股定理逆定理可證出△APP′為直角三角形,故此∠BPC=__________°;同時,可以說明∠BPA=90°,在Rt△APB中,利用勾股定理,可以求出等邊△ABC的邊AB=__________.
(2)請你參考聰聰同學的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com