【題目】(探究活動)
如圖1:已知直線a與b平行,直線c與直線a、b分別相交于點A. B,直線d與直線a、b分別相交于點C. D,點P在直線c上移動,連接PC、PD.探究∠CPD、∠PCA、∠PDB之間的數(shù)量關(guān)系.
(探究過程)
(1)當點P在點A. B之間移動時,如圖2,寫出∠CPD、∠PCA、∠PDB之間的關(guān)系,并說明理由.
(2)當點P在A. B兩點外移動時,如圖3,寫出∠CPD、∠PCA、∠PDB之間的關(guān)系,并說明理由.
【答案】(1)∠CPD=∠PCA+∠PDB,理由見解析;(2)∠CPD=∠PDB∠PCA,理由見解析.
【解析】
(1)過P點作PE∥AC交CD于E點,由于AC∥BD,則PE∥BD,根據(jù)平行線的性質(zhì)得∠CPE=∠PCA,∠DPE=∠PDB,據(jù)此可得∠CPD、∠PCA、∠PDB之間的關(guān)系;
(2)同樣,過P點作PE∥AC交CD于E點,由于AC∥BD,則PE∥BD,根據(jù)平行線的性質(zhì)得∠CPE=∠PCA,∠DPE=∠PDB,據(jù)此可得∠CPD、∠PCA、∠PDB之間的關(guān)系;
(1)∠CPD=∠PCA+∠PDB.
理由:如圖2,過P點作PE∥AC交CD于E點,
∵AC∥BD
∴PE∥BD,
∴∠CPE=∠PCA,∠DPE=∠PDB,
∴∠CPD=∠CPE+∠DPE=∠PCA+∠PDB;
(2)∠CPD=∠PDB∠PCA;
理由:如圖3,過P點作PE∥BD交CD于E點,
∵AC∥BD,
∴PE∥AC,
∴∠CPE=∠PCA,∠DPE=∠PDB,
∴∠CPD=∠DPE∠CPE=∠PDB∠PCA
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,梯形AOCD中,AD=9,OC=10,AO=4,在線段OC上任取一點N(不與O,C重合),連接DN,作NE⊥DN,交AO于點E.
(1)當CN=2時,求點E的坐標.
(2)若CN=x,OE=y,求y與x的函數(shù)關(guān)系式.
(3)探索與研究:若點M從O點沿OC方向、N點從C點沿CO方向同時等速運動,現(xiàn)有一點F,滿足MF⊥MN,NF⊥ND.
①猜想F點在什么線上運動?并求出這條線所對應(yīng)的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
②求出F點在運動過程中的最高點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景
在數(shù)學活動課上,張老師要求同學們拿兩張大小不同的矩形紙片進行旋轉(zhuǎn)變換探究活動.如圖 1,在矩形紙片ABCD 和矩形紙片EFGH中,AB=1,AD=2,且FE>AD,FG>AB,點E 是 AD 的中點,矩形紙片 EFGH 以點E 為旋轉(zhuǎn)中心進行逆時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中會產(chǎn)生怎樣的數(shù)量關(guān)系,提出恰當?shù)臄?shù)學問題并加以解決.
解決問題
下面是三個學習小組提出的數(shù)學問題,請你解決這些問題.
(1)“奮進”小組提出的問題是:如圖 1,當 EF 與 AB 相交于點 M,EH 與 BC 相交于點 N 時,求證:EM=EN.
(2)“雄鷹”小組提出的問題是:在(1)的條件下,當 AM=CN 時,AM 與 BM 有怎樣的數(shù)量關(guān)系,請說明理由.
(3)“創(chuàng)新”小組提出的問題是:若矩形 EFGH 繼續(xù)以點 E 為旋轉(zhuǎn)中心進行逆時針旋轉(zhuǎn),當 時,請你在圖 2 中畫出旋轉(zhuǎn)后的示意圖,并求出此時 EF 將邊 BC 分成的兩條線段的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,點.
(1)只用直尺(沒有刻度)和圓規(guī),求作一個點P,使點P同時滿足下列兩個條件
①點P到A,B兩點的距離相等;
②點P到的兩邊的距離相等.
(要求保留作圖痕跡,不必寫出作法)
(2)在(1)作出點P后,點P的坐標為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的布袋中裝有8個紅球和16個白球,它們除顏色不同外其余都相同.
(1)求從布袋中摸出一個球是紅球的概率;
(2)現(xiàn)從布袋中取走若干個白球,并放入相同數(shù)目的紅球,攪拌均勻后,再從布袋中摸出一個球是紅球的概率是,問取走了多少個白球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校想了解學生每周的課外閱讀時間情況,隨機調(diào)查了部分學生,對學生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖:
根據(jù)圖中提供的信息,解答下列問題:
(1)共隨機調(diào)查了___名學生,課外閱讀時間在68小時之間有___人,并補全頻數(shù)分布直方圖;
(2)求扇形統(tǒng)計圖中m的值和E組對應(yīng)的圓心角度數(shù);
(3)請估計該校3000名學生每周的課外閱讀時間不小于6小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行全市讀書活動月演講比賽的選拔賽,根據(jù)選拔賽成績擬從小紅和小王兩位同學中推選1人參加全市的總決賽,兩人的選拔賽成績?nèi)缦拢▎挝唬悍郑?/span>
形象 | 主題 | 普通話 | 演講技巧 | |
小紅 | 85 | 70 | 80 | 85 |
小王 | 95 | 70 | 75 | 80 |
(1)若要按形象占40%,主題占10%,普通話占20%,演講技巧占30%計算總分,哪位選手將勝出?
(2)評委們已算出小紅和小王同學的形象、主題、普通話、演講技巧四項成績的平均分都是80分,小紅的成績方差為,請你計算小王成績的方差,并說明若要選派各方面素質(zhì)均衡的選手參賽,哪位選手將勝出?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com