【題目】已知∠MAN=90°,在射線AM上取一點(diǎn)B,在射線AN上取一點(diǎn)C,連接BC,再作點(diǎn)A關(guān)于直線BC的對(duì)稱點(diǎn)D,連接ADBD,移動(dòng)點(diǎn)C,當(dāng)2AD=BC時(shí),∠ABD的度數(shù)是_____

【答案】30 150

【解析】

分兩種情況,取BC的中點(diǎn)E,連接AEDE,依據(jù)直角三角形斜邊上中線的性質(zhì),即可得到ADE是等邊三角形,進(jìn)而依據(jù)軸對(duì)稱的性質(zhì)得出∠ABD的度數(shù).

解:分兩種情況:

如圖,當(dāng)ABAC時(shí),取BC的中點(diǎn)E,連接AE,DE

AE=DE= BC,

BC=2AE=2DE,

又∵BC=2AD

AD=AE=DE,

∴△ADE是等邊三角形,

∴∠AED=60°,

又∵BC垂直平分AD,

∴∠AEC=30°,

又∵BE=AE,

∴∠ABC= AEC=15°,

∴∠ABD=2ABC=30°;

如圖,當(dāng)ABAC時(shí),同理可得∠ACD=30°,

又∵∠BAC=BDC=90°,

∴∠ABD=150°,

故答案為:30°150°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四幅圖象分別表示變量之間的關(guān)系,請(qǐng)按圖象的順序,將下面的四種情境與之對(duì)應(yīng)排序.正確的順序是( 。

籃球運(yùn)動(dòng)員投籃時(shí),投出去的籃球的高度與時(shí)間的關(guān)系

去超市購買同一單價(jià)的水果,所付費(fèi)用與水果數(shù)量的關(guān)系

李老師使用的是一種含月租的手機(jī)計(jì)費(fèi)方式,則他每月所付話費(fèi)與通話時(shí)間的關(guān)系

周末,小明從家到圖書館,看了一段時(shí)間書后,按原速度原路返回,小明離家的距離與時(shí)間的關(guān)系

A. ①②③④ B. ①③④② C. ①③②④ D. ①④②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是一塊銳角三角形材料,高線AH8 cm,底邊BC10 cm,要把它加工成一個(gè)矩形零件,使矩形DEFG的一邊EFBC上,其余兩個(gè)頂點(diǎn)D,G分別在AB,AC上,則四邊形DEFG的最大面積為( )

A. 40 cm2 B. 20 cm2

C. 25 cm2 D. 10 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)坡角為30°的斜坡上有一電線桿AB,當(dāng)太陽光與水平線成45°角時(shí),測得該桿在斜坡上的影長BC20m.求電線桿AB的高(精確到0.1m,參考數(shù)值:≈1.73,≈1.41).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABD△BCD都是等邊三角形紙片,AB=2,將△ABD紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD

(1)求證:△FBE是直角三角形;

(2)求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】證明命題對(duì)角線相等的平行四邊形是矩形,要根據(jù)題意,畫出圖形,并用符號(hào)表示已知和求證,寫出證明過程,下面是小張同學(xué)根據(jù)題意畫出的圖形,并寫出了不完整的已知和求證.

已知:如圖,ABCD是平行四邊形,ACBD是對(duì)角線,且   

求證:   

請(qǐng)你補(bǔ)全已知和求證,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)之道在于悟,希望同學(xué)們?cè)趩栴}(1)解決過程中有所感悟,再繼續(xù)探索研究問題(2)(3).

1)如圖,D在線段BC上,B=C=ADE,AD=DE.求證:△ABDDCE

2)如圖,ABC是等腰直角三角形,∠ACB=90°,AC=BC=4,在CB的延長線上有一動(dòng)點(diǎn)D,連接AD,以AD為直角邊作等腰直角三角形ADE(∠ADE=90°,AD=DE ),連接EB并延長,與AC的延長線交于點(diǎn)F.當(dāng)動(dòng)點(diǎn)D在運(yùn)動(dòng)過程中,CF的長度是否會(huì)發(fā)生變化,如果變化,請(qǐng)說明理由;如果不變,請(qǐng)求出CF的長.

3)如圖,射線AMBN,MAAB,NBAB,點(diǎn)PAB上一點(diǎn), PA=1,PB=2,在射線AMBN上分別作點(diǎn)C、點(diǎn)D,滿足△CPD為等腰直角三角形.則△CPD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)經(jīng)過某種變換后得到點(diǎn),我們把點(diǎn)叫做點(diǎn)的終結(jié)點(diǎn).已知點(diǎn)的終結(jié)點(diǎn)為,點(diǎn)的終結(jié)點(diǎn)為,點(diǎn)的終結(jié)點(diǎn)為,這樣依次得到、、,若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,∠ABC為銳角,ABBC,點(diǎn)EAD上的一點(diǎn),延長CEF,連接BFAD于點(diǎn)G使∠FBCDCE

求證:∠DF;

在直線AD找一點(diǎn)P,使以點(diǎn)BP、C為頂點(diǎn)的三角形與以點(diǎn)C、D、P為頂點(diǎn)的三角形相似.(在原圖中標(biāo)出準(zhǔn)確P點(diǎn)的位置,必要時(shí)用直尺和圓規(guī)作出P點(diǎn),保留作圖的痕跡,不寫作法)

查看答案和解析>>

同步練習(xí)冊(cè)答案