【題目】小明為了了解氣溫對用電量的影響,對去年自己家的每月用電量和當?shù)貧鉁剡M行了統(tǒng)計.去年當?shù)孛吭碌钠骄鶜鉁厝鐖D1,小明家去年月用電量如圖2.

根據(jù)統(tǒng)計圖,回答下面的問題:

(1)當?shù)厝ツ暝缕骄鶜鉁氐淖罡咧怠⒆畹椭蹈鳛槎嗌?相?yīng)月份的用電量各是多少?

(2)請簡單描述月用電量與氣溫之間的關(guān)系;

(3)假設(shè)去年小明家用電量是所在社區(qū)家庭用電量的中位數(shù),據(jù)此他能否預(yù)測今年該社區(qū)的年用電量?請簡要說明理由.

【答案】(1)月平均氣溫的最高值為30.6,月平均氣溫的最低值為5.8;相應(yīng)月份的用電量分別為124千瓦時和110千瓦時.(2)當氣溫較高或較低時,用電量較多;當氣溫適宜時,用電量較少.(3)解:能,中位數(shù)刻畫了中間水平。(回答合理即可)

【解析】

試題分析:(1)觀察圖1的折線圖可以發(fā)現(xiàn)最高點為8月,最低點為1月,則可在圖2中找出8月和1月相對應(yīng)的用電量;(2)可結(jié)合實際,當氣溫較高或較低時,家里會用空調(diào)或取暖器,用電量會多起來;當氣溫適宜時,用電量較少.(3)中位數(shù)的特點是表示了一組數(shù)據(jù)的中間水平.

試題解析:(1)解:月平均氣溫的最高值為30.6,月平均氣溫的最低值為5.8;

相應(yīng)月份的用電量分別為124千瓦時和110千瓦時.

(2)解:當氣溫較高或較低時,用電量較多;當氣溫適宜時,用電量較少.

(3)解:能,中位數(shù)刻畫了中間水平。(回答合理即可)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】能判定四邊形ABCD為平行四邊形的題設(shè)是( )。

A. AB∥CD,AD=BC B. AB=CD,AD=BC

C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面設(shè)計的原理不是利用三角形穩(wěn)定性的是(

A. 三角形的房架 B. 由四邊形組成的伸縮門

C. 斜釘一根木條的長方形窗框 D. 自行車的三角形車架

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個正多邊形的一個外角是36°,那么該正多邊形的邊數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一副含的三角板疊合在一起,邊重合,(如圖1),點為邊的中點,邊相交于點,現(xiàn)將三角板繞點按順時針方向旋轉(zhuǎn)(如圖2),在的變化過程中,觀察點的位置變化,點相應(yīng)移動的路徑長為 (結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個尋寶游戲的尋寶通道由正方形ABCD的邊組成,如圖1所示.為記錄尋寶者的行進路線,在AB的中點M處放置了一臺定位儀器,設(shè)尋寶者行進的時間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進,且表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則尋寶者的行進路線可能為( )

A.A→B
B.B→C
C.C→D
D.D→A

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的中線,是線段上一點(不與點重合),于點,,連結(jié).

(1)如圖1,當點重合時,求證:四邊形是平行四邊形;

(2)如圖2,當點不與重合時,(1)中的結(jié)論還成立嗎?請說明理由.

(3)如圖3,延長于點,若,且.當,時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對任意一個三位數(shù)n,如果n滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.

(1)計算:F(243),F(xiàn)(617);

(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k=,當F(s)+F(t)=18時,求k的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家商店將某種商品按進貨價提高100%后,又以6折優(yōu)惠售出,售價為60元,則這種商品的進貨價是( )
A.120元
B.100元
C.72元
D.50元

查看答案和解析>>

同步練習冊答案