【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函雙y=(m≠0)的陽象交于點(diǎn)c(n,3),與x軸、y軸分別交于點(diǎn)A、B,過點(diǎn)C作CM⊥x軸,垂足為M,若tan∠CAM=,OA=2.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點(diǎn)D是反比例函數(shù)圖象在第三象限部分上的一點(diǎn),且到x軸的距離是3,連接AD、BD,求△ABD的面積.
【答案】(1)y=,y=x+;(2)3.
【解析】
(1)利用三角函數(shù)求得AM的長,則C的坐標(biāo)即可求得,利用待定系數(shù)法求得反比例函數(shù)解析式,然后利用待定系數(shù)法求得一次函數(shù)的解析式;
(2)首先求得D的坐標(biāo),然后利用三角形的面積公式求解.
(1)∵在直角△ACM中,tan∠CAM==,CM=3,
∴AM=4,
∴OM=AM﹣OA=4﹣2=2.
∴n=2,
則C的坐標(biāo)是(2,3).
把(2,3)代入y=得m=6.
則反比例函數(shù)的解析式是y=;
根據(jù)題意得,
解得,
則一次函數(shù)的解析式是y=x+;
(2)在y=中令y=﹣3,則x=﹣2.
則D的坐標(biāo)是(﹣2,﹣3).
AD=3,
則S△ABD=×3×2=3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格紙中每個小方格都是邊長為1的正方形,我們把以格點(diǎn)連線為邊的多邊形稱為“格點(diǎn)多邊形”.
(1)在圖1中確定格點(diǎn)D,并畫出一個以A、B、C、D為頂點(diǎn)的四邊形,使其為軸對稱圖形(一種情況即可);
(2)直接寫出圖2中△FGH的面積是 ;
(3)在圖3中畫一個格點(diǎn)正方形,使其面積等于17.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函雙y=(m≠0)的陽象交于點(diǎn)c(n,3),與x軸、y軸分別交于點(diǎn)A、B,過點(diǎn)C作CM⊥x軸,垂足為M,若tan∠CAM=,OA=2.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點(diǎn)D是反比例函數(shù)圖象在第三象限部分上的一點(diǎn),且到x軸的距離是3,連接AD、BD,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是反比例函數(shù)y=的圖象在第一象限上的動點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊△ABC使點(diǎn)C落在第二象限,且邊BC交x軸于點(diǎn)D,若△ACD與△ABD的面積之比為1:2,則點(diǎn)C的坐標(biāo)為( 。
A. (﹣3,2) B. (﹣5,) C. (﹣6,) D. (﹣3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰Rt△ABC中,D為斜邊AB的中點(diǎn),點(diǎn)E在AC上,且∠EDC=72°,點(diǎn)F在AB上,滿足DE=DF,則∠CEF的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E、F分別在BC、CD上,將△ABE沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)Bˊ處,又將△CEF沿EF折疊,使點(diǎn)C落在射線EBˊ與AD的交點(diǎn)Cˊ處,則的值( 。
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,A(a,0)、B(0,b),且|a+2|+(b+2a)2=0,點(diǎn)P為x軸上一動點(diǎn),連接BP,在第一象限內(nèi)作BC⊥AB且BC=AB
(1) 求點(diǎn)A、B的坐標(biāo)
(2) 如圖1,連接CP.當(dāng)CP⊥BC時,作CD⊥BP于點(diǎn)D,求線段CD的長度
(3) 如圖2,在第一象限內(nèi)作BQ⊥BP且BQ=BP,連接PQ.設(shè)P(p,0),直接寫出S△PCQ=_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=2.若點(diǎn)M,N分別在OA,OB上,且△PMN為等邊三角形,則滿足上述條件的△PMN有( )
A.1個B.2個C.3個D.3個以上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com