【題目】在等腰Rt△ABC中,D為斜邊AB的中點,點E在AC上,且∠EDC=72°,點F在AB上,滿足DE=DF,則∠CEF的度數為_______.
【答案】54°或144°
【解析】分析:分兩種情況:①點F在AD上時,可求出∠DEF=81°,在△CDE中可求出∠CED=63°,故可求出∠CEF=144°;②點F在DB上時,可求出∠DEF=9°,故可求出∠CEF=54°.
詳解:①點F在AD上時,如圖1,
∵AC=BC,D是AB的中點,且∠ACB=90°,
∴∠ADC=90°,∠DCE=45°
∵∠CDE=72°
∴∠EDF=18°
∵DE=DF
∴∠DEF=81°
在△ECD中,∠CDE=72°,∠ECD=45°
∴∠CED=63°,
∴∠CEF=144°;
②點F在DB上時,如圖2.
同理得,∠DEF=9°,
∴∠CEF=54°.
故答案為:54°或144°.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2,點E是CD邊的中點,點F是邊BC上不與點B,C重合的一個動點,把∠C沿直線EF折疊,使點C落在點C′處.當△ADC′為等腰三角形時,FC的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程=1的解為負數,且關于x、y的二元一次方程組的解之和為正數,則下列各數都滿足上述條件a的值的是( )
A. ,2,5 B. 0,3,5 C. 3,4,5 D. 4,5,6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=kx+b(k≠0)的圖象與反比例函雙y=(m≠0)的陽象交于點c(n,3),與x軸、y軸分別交于點A、B,過點C作CM⊥x軸,垂足為M,若tan∠CAM=,OA=2.
(1)求反比例函數和一次函數的解析式;
(2)點D是反比例函數圖象在第三象限部分上的一點,且到x軸的距離是3,連接AD、BD,求△ABD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),點D在BC上,AB與CE相交于點F
(1) 如圖1,直接寫出AB與CE的位置關系
(2) 如圖2,連接AD交CE于點G,在BC的延長線上截取CH=DB,射線HG交AB于K,求證:HK=BK
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是BC邊上的高線,BM平分∠ABC交AE于點M,經過B,M 兩點的⊙O交BC于點G,交AB于點F ,FB為⊙O的直徑.
(1)求證:AM是⊙O的切線
(2)當BE=3,cosC=時,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】Rt△ABC中,∠ABC=90°,AB=3,BC=4,過點B的直線把△ABC分割成兩個三角形,使其中只有一個是等腰三角形,則這個等腰三角形的面積是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com