【題目】武漢市政府大力扶持大學(xué)生創(chuàng)業(yè),童威在政府的扶持下投資銷售一種進價為每盞20元的護眼臺燈,銷售過程中發(fā)現(xiàn),每月銷售量y(盞)與銷售單價x(元)之間的關(guān)系可近似地看作一次函數(shù):y=﹣10x+500.
(1)設(shè)每月獲得的利潤為w(元),求w與x的關(guān)系式.
(2)如果想要每月獲得2000元的利潤,那么銷售單價應(yīng)定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元.如果童威想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?
【答案】(1);(2)30元或40元;(3)3600.
【解析】
(1)每月銷售量與銷售單價之間的關(guān)系可近似看作一次函數(shù),利潤=(定價-進價)×銷售量,從而列出關(guān)系式;
(2)令w=2000,然后解一元二次方程,從而求出銷售單價;
(3)根據(jù)拋物線的性質(zhì)和圖象,求出每月的成本.
(1)由題意,得:
,
答:當(dāng)銷售單價定為35元時,每月可獲得最大利潤.
(2)由題意,得:,
解這個方程得:,
答:想要每月獲得2000元的利潤,銷售單價應(yīng)定為30元或40元.
(3)∵,
∴拋物線開口向下,
∴當(dāng)30≤x≤40時,w≥2000,
∵x≤32,
∴當(dāng)30≤x≤32時,w≥2000,
設(shè)成本為P(元),由題意,得:
,
∵<0,
∴P隨x的增大而減小,
∴當(dāng)時,P最小=3600,
答:想要每月獲得的利潤不低于2000元,每月的成本最少為3600元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,李老師和同學(xué)們做一個游戲:他在三張硬紙片上分別寫出一個代數(shù)式,背面分別標(biāo)上序號①、②、③,擺成如圖所示的一個等式,然后翻開紙片②是4x2+5x+6,翻開紙片③是3x2﹣x﹣2.
解答下列問題
(1)求紙片①上的代數(shù)式;
(2)若x是方程2x=﹣x﹣9的解,求紙片①上代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了組織一次球類對抗賽,在本校隨機抽取了若干名學(xué)生,對他們每個人最喜歡的一項球類運動進行了統(tǒng)計,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你依據(jù)以上的信息回答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)通過計算補全條形統(tǒng)計圖;
(3)若全校有4000名學(xué)生,請你估計該校最喜歡籃球和足球運動的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,O為AB的中點,AE=AO,BF=BO,OE=2,OF=3,則AB的長為( 。
A.B.5C.8D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O與正方形ABCD的兩邊AB,AD相切,且DE與⊙O相切于點E.若AB=7,DO=5,則DE的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2),延長CB交x軸于點A1,作正方形A1B1C1C,延長C1B1交x軸于點A2,作正方形A2B2C2C1,…按這樣的規(guī)律進行下去,第2019個正方形的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點O為圓心,經(jīng)過A,C兩點且與BC邊交于點E,點D為CE的下半圓弧的中點,連接AD交線段EO于點F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF=,求⊙O的半徑r及sinB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為5的正方形ABCD中,點E在BC邊上,連接AE,過D作DF//AE交BC的延長線于點F,過點C作CG⊥DF于點G,延長AE、GC交于點H,點P是線段DG上的任意一點(不與點D、點G重合),連接CP,將△CPG沿CP翻折得到,連接. 若CH=1,則長度的最小值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com