【題目】如圖,矩形ABCD中,AB=6,∠ABD=60°,點E從點A出發(fā),以每秒2個單位長度的速度沿邊AB運動,到點B停止運動.過點E作EF∥BD交AD于點F,將△AEF繞點E順時針旋轉(zhuǎn)得到△GEH,且點G落在線段EF上,設(shè)點E的運動時間為t(秒)(0<t<3).
(1)若t=1,求△GEH的面積;
(2)若點G在∠ABD的平分線上,求BE的長;
(3)設(shè)△GEH與△ABD重疊部分的面積為T,用含t的式子表示T,并直接寫出當(dāng)0<t<3時T的取值范圍.
【答案】(1)2;(2)3;(3)T=.
【解析】
(1)根據(jù)四邊形ABCD是矩形和EF∥BD,可推出AE和AF的長,即可求出答案;
(2)由BG平分∠ABD,可得∠EBG=∠ABD=30°,再根據(jù)∠AEG=∠EBG+∠EGB=60°,可得∠EBG=∠EGB=30°,即可推出BE的長;
(3)當(dāng)點H落在BD上時,作EJ⊥BD于J,根據(jù)EF∥BD,推出△EBH是等邊三角形,從而得出t=1,再分當(dāng)0<t≤1時和當(dāng)1<t<3時兩種情況討論即可.
解:(1)如圖1中,
∵四邊形ABCD是矩形,
∴∠A=90°,
∵EF∥BD,
∴∠AEF=60°,
∵AE=2,
∴AF=AEtan60°=,
∴S△EGH=S△AEF=AEAF=×2×=;
(2)如圖2中,
由題意得,BG平分∠ABD,
∴∠EBG=∠ABD=30°,
∵∠AEG=∠EBG+∠EGB=60°,
∴∠EBG=∠EGB=30°,
∴BE=EG=AE=3;
(3)如圖1﹣1中,當(dāng)點H落在BD上時,作EJ⊥BD于J,
∵EF∥BD,
∴∠FEH=∠EHB=60°,
∴△EBH是等邊三角形,
∴EH=EB=EF=2AE,
∴AE=2,BE=4,
∴t=1,
如圖3中,當(dāng)0<t≤1時,重疊部分是△EGH,T=S△AEF=×2t×2t×=t2,
如圖4中,當(dāng)1<t<3時,重疊部分是四邊形MNGE,作EJ⊥BD于J,
在Rt△EBJ中,∵BE=6﹣2t,∠EBJ=60°,
∴BJ=BE=3﹣t,EJ=BJ=3﹣t,
∵△EBM是等邊三角形,
∴BJ=JM=3﹣t,
∵四邊形EGNJ是矩形,
∴EG=NJ=2t,
∴MN=NJ﹣MJ=3t﹣3,
∴T=(MN+EG)EJ=(3t﹣3+2t)(3﹣t)=t2+9t,
綜上所述,T=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與坐標(biāo)軸分別相交于點A、B,點C在線段AO上,點D在線段AB上,且AC=AD.將△ACD沿直線CD翻折得到△ECD.
(1)求AB的長;
(2)求證:四邊形ACED是菱形;
(3)設(shè)點C的坐標(biāo)為(0,),△ECD與△AOB重合部分的面積為,求關(guān)于的函數(shù)解析式,并直接寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識改變世界,科技改變生活。導(dǎo)航設(shè)備的不斷更新方便了人們的出行。如圖,某校組織學(xué)生乘車到蒲江茶葉基地C地進行研學(xué)活動,車到達A地后,發(fā)現(xiàn)C地恰好在A地的正東方向,且距A地9.1千米,導(dǎo)航顯示車輛應(yīng)沿南偏東60°方向行駛至B地,再沿北偏東53°方向行駛一段距離才能到達C地,求B、C兩地的距離(精確到個位)
(參考數(shù)據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品,3月份的產(chǎn)量為5000件,4月份的產(chǎn)量為10000件.用簡單隨機抽樣的方法分別抽取這兩個月生產(chǎn)的該產(chǎn)品若干件進行檢測,并將檢測結(jié)果分別繪制成如圖所示的扇形統(tǒng)計圖和頻數(shù)直方圖(每組不含前一個邊界值,含后一個邊界值).已知檢測綜合得分大于70分的產(chǎn)品為合格產(chǎn)品.
(1)求4月份生產(chǎn)的該產(chǎn)品抽樣檢測的合格率;
(2)在3月份和4月份生產(chǎn)的產(chǎn)品中,估計哪個月的不合格件數(shù)最多?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地高速鐵路建設(shè)成功,一列動車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車均勻速行駛并同時出發(fā),設(shè)普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示y與x之間的函數(shù)關(guān)系,下列說法:
①甲、乙兩地相距1800千米;
②點B的實際意義是兩車出發(fā)后4小時相遇;
③m=6,n=900;
④動車的速度是450千米/小時.
其中不正確的是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于“新冠肺炎”的發(fā)生,市場上防護口罩出現(xiàn)熱銷.某藥店第一次用2000元購進若干個防護口罩,并按定價2.5元/個出售,很快售完由于該防護口罩暢銷,第二次購進時,每個防護口罩的進價比第一次的進價提高了25%,該藥店用3000元購進防護口罩的數(shù)量比第一次多了200個,并把定價提高20%進行銷售.
(1)第一次購進時,每個防護口罩的價格是多少元?
(2)第二次售出800個防護口罩時,出現(xiàn)了滯銷,該藥店打算降價售完剩余的防護口罩.那么該藥店每個防護口罩至多降價多少元出售,才能使第二次銷售的防護口罩不虧本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【發(fā)現(xiàn)證明】
如圖1,點E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數(shù)量關(guān)系.
小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
【類比引申】
(1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;
【聯(lián)想拓展】
(2)如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,菱形ABCD的頂點B在x軸的正半軸上,點A坐標(biāo)為(-4,0),點D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點C,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形邊長為的網(wǎng)格中,的頂點均在格點上,是以為圓心,為半徑的一段圓弧,請用無刻度的直尺畫圖(保留連線痕跡).
(1)的長為 ;
(2)將線段繞點逆時針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為() ,連接.
①如圖 1,若是的中點,請在網(wǎng)格中畫出,使;
②如圖 2,連接,請在網(wǎng)格中畫出點,使的值最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com