【題目】已知:正方形中,點(diǎn)、、分別在、、、上,且,

四邊形是正方形嗎?為什么?

若正方形的邊長為,且,請求出四邊形的面積.

【答案】四邊形是正方形;證明見解析;(2)10.

【解析】

(1)根據(jù)正方形的性質(zhì)證明AE=BF=CG=DH、∠A=∠B=∠C=∠D、AH=BE=CF=DG,利用SAS判定△AEH△BFE△CGF△DHG,即可得,所以四邊形EFGH是菱形,再證明∠HEF=90°,即可判定四邊形EFGH是正方形;(2)根據(jù)已知條件求得AE=BF=CG=DH=3,再由正方形的面積即可求得四邊形的面積.

四邊形是正方形;

證明:四邊形是正方形,

,,

,

,

、、中,

,

,,

四邊形是菱形,

,

,

四邊形是正方形;

正方形的邊長為,且,

正方形的面積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,、兩個頂點(diǎn)在軸上,頂點(diǎn)軸的負(fù)半軸上.已知,的面積,拋物線經(jīng)過、三點(diǎn).

求此拋物線的函數(shù)表達(dá)式;

點(diǎn)是拋物線對稱軸上的一點(diǎn),在線段上有一動點(diǎn),以每秒個單位的速度從運(yùn)動,(不與點(diǎn),重合),過點(diǎn),交軸于點(diǎn),設(shè)點(diǎn)的運(yùn)動時間為秒,試把的面積表示成的函數(shù),當(dāng)為何值時,有最大值,并求出最大值;

設(shè)點(diǎn)是拋物線上異于點(diǎn),的一個動點(diǎn),過點(diǎn)軸的平行線交拋物線于另一點(diǎn).以為直徑畫,則在點(diǎn)的運(yùn)動過程中,是否存在與軸相切的?若存在,求出此時點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市青山綠水行動中,某社區(qū)計(jì)劃對面積為的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個工程隊(duì)來完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,如果兩隊(duì)各自獨(dú)立完成面積為區(qū)域的綠化時,甲隊(duì)比乙隊(duì)少用6天.

(1)求甲、乙兩工程隊(duì)每天各能完成多少面積的綠化;

(2)若甲隊(duì)每天綠化費(fèi)用是1.2萬元,乙隊(duì)每天綠化費(fèi)用為0.5萬元,社區(qū)要使這次綠化的總費(fèi)用不超過40萬元,則至少應(yīng)安排乙工程隊(duì)綠化多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ADABC的角平分線,EF分別是邊AB、AC的中點(diǎn),連接DE、DF,在不再連接其他線段的前提下,要使四邊形AEDF成為菱形,還需添加一個條件,這個條件可以是 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,把ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時,

①寫出圖中一對全等的三角形,并寫出它們的所有對應(yīng)角;

②設(shè)的度數(shù)為x,∠的度數(shù)為,那么∠1,∠2的度數(shù)分別是多少?(用含有xy的代數(shù)式表示)

③∠A與∠1、∠2之間有一種數(shù)量關(guān)系始終保持不變,請找出這個規(guī)律.

(2)如圖2,把ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE外部時,∠A與∠1、∠2的數(shù)量關(guān)系是否發(fā)生變化?如果發(fā)生變化,求出∠A與∠1、∠2的數(shù)量關(guān)系;如果不發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知點(diǎn)D、E、F分別為邊BC、ADCE的中點(diǎn),若△ABC的面積為16,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了保護(hù)環(huán)境和提高果樹產(chǎn)量,某果農(nóng)計(jì)劃從甲、乙兩個倉庫用汽車向A、B兩個果園運(yùn)送有機(jī)化肥,甲、乙兩個倉庫分別可運(yùn)出80噸和100噸有機(jī)化肥,A、B兩個果園分別需要110噸和70噸有機(jī)化肥.甲倉庫到A、B兩個果園的路程分別為15千米和25千米,乙倉庫到A、B兩個果園的路程都是20千米.設(shè)甲倉庫運(yùn)往A果園x噸有機(jī)化肥,解答下列問題:

1)甲倉庫運(yùn)往B果園   噸有機(jī)化肥,乙倉庫運(yùn)往B果園   噸有機(jī)化肥;

2)若汽車每噸每千米的運(yùn)費(fèi)為2元,設(shè)總運(yùn)費(fèi)為y元,求y關(guān)于x的函數(shù)表達(dá)式,并求當(dāng)甲倉庫運(yùn)往A果園多少噸有機(jī)化肥時,總運(yùn)費(fèi)最?此時的總運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC90°,以AC為邊向外作△ACD,FBC上一點(diǎn),連結(jié)AF

1)如圖1,若∠ACD90°,∠CAD30°,CD1ABBF2,求FC的長度.

2)如圖2,若ABAC,延長DCAF延長線于H點(diǎn),且∠AHD90°,∠BCH=∠CAD,連結(jié)BDAFM點(diǎn),求證:CD2MH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD相交于點(diǎn)O,CE∥BD,DE∥AC,AC=4,則四邊形OCED的周長為( 。

A. 4 B. 8 C. 10 D. 12

查看答案和解析>>

同步練習(xí)冊答案