如圖所示是由兩個(gè)長(zhǎng)方體組合而成的一個(gè)立體圖形的三視圖,根據(jù)圖中所標(biāo)尺寸(單位:mm),計(jì)算出這個(gè)立體圖形的表面積是(    )mm2。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成一個(gè)大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊長(zhǎng)分別為a、b,那么(a-b)2的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成一個(gè)大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊長(zhǎng)分別為a、b,試求:(a+b)2 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成一個(gè)大正方形(如圖所示).如果大正方形的面積是49,小正方形的面積4,直角三角形的兩直角邊長(zhǎng)分別為a,b,那么下列結(jié)論正確的有(  )個(gè).
(1)b-a=2,(2)a2+b2=49,(3)4+2ab=49,(4)a+b=
94

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林長(zhǎng)春朝陽(yáng)區(qū)八年級(jí)上學(xué)期期中質(zhì)量監(jiān)測(cè)數(shù)學(xué)試卷(帶解析) 題型:解答題

感知:利用圖形中面積的等量關(guān)系可以得到某些數(shù)學(xué)公式.例如,根據(jù)圖①甲,我們可以得到兩數(shù)和的平方公式:,根據(jù)圖①乙能得到的數(shù)學(xué)公式是                  

拓展:圖②是由四個(gè)完全相同的直角三角形拼成的一個(gè)大正方形,直角三角形的兩直角邊長(zhǎng)為,斜邊長(zhǎng)為,利用圖②中的面積的等量關(guān)系可以得到直角三角形的三邊長(zhǎng)之間的一個(gè)重要公式,這個(gè)公式是:               ,這就是著名的勾股定理.請(qǐng)利用圖②證明勾股定理.
應(yīng)用:我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)完全相同的直角三角形與中間的一個(gè)小正方形拼成一個(gè)大正方形(如圖③所示).如果大正方形的面積是17,小正方形的面積是1,直角三角形的兩直角邊長(zhǎng)分別為,那么的值是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成一個(gè)大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊長(zhǎng)分別為a、b,試求:(a+b)2 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案