【題目】已知∠AOB內(nèi)部有3條射線OE、OC、OF
(1) 如圖1,若∠AOB = 90°,∠AOC = 30°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度數(shù).
(2) 如圖2,若∠AOB = α,∠EOB = ∠COB,∠COF = ∠FOA,求∠EOF的度數(shù)(用含α的式子表示)
【答案】(1)∠EOF=45°;(2)∠EOF=α.
【解析】
(1)首先根據(jù)角平分線的定義求得∠COF,然后求得∠BOC的度數(shù),根據(jù)角平分線的定義求得∠EOC,然后根據(jù)∠EOF=∠COF+∠EOC求解;
(2)根據(jù)角平分線的定義可以得到∠COF=∠AOC,∠EOC=∠BOC,然后根據(jù)∠EOF=∠COF+∠EOC=∠AOC+∠BOC=(∠AOC+∠BOC)即可得到.
解:(1)∵OF平分∠AOC,
∴∠COF=∠AOC=×30°=15°,
∵∠BOC=∠AOB-∠AOC=90°-30°=60°,OE平分∠BOC,
∴∠EOC=∠BOC=30°,
∴∠EOF=∠COF+∠EOC=45°;
(2)∵OF平分∠AOC,
∴∠COF=∠AOC,
同理,∠EOC=∠BOC,
∴∠EOF=∠COF+∠EOC=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB=α;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D,C在BF上,AC∥DE,∠A=∠E,BD=CF.
(1)求證:AB=EF;
(2)連接AF,BE,猜想四邊形ABEF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若一次函數(shù)的圖象與x軸的交于點(diǎn),與y軸交于點(diǎn)下列結(jié)論:①關(guān)于x的方程的解為;②隨x的增大而減小;③關(guān)于x的方程的解為;④關(guān)于x的不等式的解為其中所有正確的為
A. ①②③ B. ①③ C. ①②④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為線段AD外一點(diǎn),M、C、B、N為AD上任意四點(diǎn),連接OM、OC、OB、ON,下列結(jié)論不正確的是( )
A. 以O為頂點(diǎn)的角共有15個(gè)
B. 若OM平分∠AOC,ON平分∠BOD,∠AOD=5∠COB,則∠MON=(∠MOC+∠BON)
C. 若M為AB中點(diǎn),N為CD中點(diǎn),則MN=(AD-CB)
D. 若MC=CB,MN=ND,則CD=2CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,AC=BC=
(1)作⊙O,使它過(guò)點(diǎn)A、B、C(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)所作的圓中,圓心角∠BOC=°,圓的半徑為 , 劣弧 的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)E在BC的延長(zhǎng)線上,的平分線BD與的平分線CD相交于點(diǎn)D,連接AD,則下列結(jié)論中,正確的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分線交于O點(diǎn),過(guò)點(diǎn)O作BC的平行線交AB于M點(diǎn),交AC于N點(diǎn),則△AMN的周長(zhǎng)為( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,則下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時(shí),四邊形ABCD是菱形
B. 當(dāng)AC⊥BD時(shí),四邊形ABCD是菱形
C. 當(dāng)∠ABC=90°時(shí),四邊形ABCD是矩形
D. 當(dāng)AC=BD時(shí),四邊形ABCD是正方形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com