【題目】有兩個(gè)全等的含30°角的直角三角板重疊在一起,如圖,將△A′B′C′繞AC的中點(diǎn)M轉(zhuǎn)動(dòng),斜邊A′B′剛好過(guò)△ABC的直角頂點(diǎn)C,且與△ABC的斜邊AB交于點(diǎn)N,連接AA′、C′C、AC′.若AC的長(zhǎng)為2,有以下五個(gè)結(jié)論:①AA′=1;②C′C⊥A′B′;③點(diǎn)N是邊AB的中點(diǎn);④四邊形AA′CC′為矩形;⑤A′N=B′C=,其中正確的有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
【答案】C
【解析】試題解析:①∵點(diǎn)M是線段AC、線段A′C′的中點(diǎn),AC=2,
∴AM=MC=A′M=MC′=1,
∵∠MA′C=30°,
∴∠MCA′=∠MA′C=30°,
∴∠A′MC=180°-30°-30°=120°,
∴∠A′MA=180°-A′MC=180°-120°=60°,
∴∠AMA′=∠C′MC=60°,
∴△AA′M是等邊三角形,
∴AA′=AM=1,故①正確;
②∵∠A′CM=30°,∠MCC′=60°,
∴∠ACA′=∠A′CM+∠MCC′=90°,
∴CC′⊥A′C,故②正確;
③∵∠A′CA=∠NAC=30°,∠BCN=∠CBN=60°,
∴AN=NC=NB,故③正確;
④∵△AA′M≌△C′CM,
∴AA′=CC′,∠MAA′=∠C′CM=60°,
∴AA′∥CC′,
∴四邊形AA′CC′是平行四邊形,
∵∠AA′C=∠AA′M+∠MA′C=90°,
四邊形AA′CC′為矩形,故④正確;
⑤AN=AB=,
∠NAA′=30°,∠AA′N(xiāo)=90°,
∴A′N(xiāo)=AN=,故⑤錯(cuò)誤.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】布袋里有四個(gè)小球,球表面分別標(biāo)有2、3、4、6四個(gè)數(shù)字,它們的材質(zhì)、形狀、大小完全相同。從中隨機(jī)摸出一個(gè)小球記下數(shù)字為x,再?gòu)氖O碌娜齻(gè)球中隨機(jī)摸出一個(gè)球記下數(shù)字為y,點(diǎn)A的坐標(biāo)為(x,y).運(yùn)用畫(huà)樹(shù)狀圖或列表的方法,寫(xiě)出A點(diǎn)所有可能的坐標(biāo),并求出點(diǎn)A在反比例函數(shù)圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內(nèi)心,以O(shè)為圓心,r為半徑的圓與線段AB有交點(diǎn),則r的取值范圍是( )
A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點(diǎn)在B點(diǎn)的拋物線交x軸于點(diǎn)A、D,交y軸于點(diǎn)E,連接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).
(1)求拋物線的解析式及頂點(diǎn)B的坐標(biāo);
(2)求證:CB是△ABE外接圓的切線;
(3)試探究坐標(biāo)軸上是否存在一點(diǎn)P,使以D、E、P為頂點(diǎn)的三角形與△ABE相似,若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)設(shè)△AOE沿x軸正方向平移t個(gè)單位長(zhǎng)度(0<t≤3)時(shí),△AOE與△ABE重疊部分的面積為s,求s與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知B點(diǎn)的坐標(biāo)為B(8,0).
(1)求拋物線的解析式及其對(duì)稱(chēng)軸方程;
(2)連接AC、BC,試判斷△AOC與△COB是否相似?并說(shuō)明理由;
(3)M為拋物線上BC之間的一點(diǎn),N為線段BC上的一點(diǎn),若MN∥y軸,求MN的最大值;
(4)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x﹣3)2=2(x﹣3);
(2)9x2﹣3=22;
(3)x2﹣6x﹣98=0;
(4)3x2﹣1=2x+2;
(5)(3m+2)2﹣7(3m+2)+10=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)A種產(chǎn)品,它的成本是6元/件,售價(jià)是8元/件,年銷(xiāo)售量為5萬(wàn)件.為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告,根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是x萬(wàn)元,產(chǎn)品的年銷(xiāo)售量將是原銷(xiāo)售量的y倍,且y與x之間滿足我們學(xué)過(guò)的二種函數(shù)(即一次函數(shù)和二次函數(shù))關(guān)系中的一種,它們的關(guān)系如下表:
x(萬(wàn)元) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y | 1 | 1.275 | 1.5 | 1.675 | 1.8 | … |
(1)求y與x的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍)
(2)如果把利潤(rùn)看作是銷(xiāo)售總額減去成本費(fèi)用和廣告費(fèi)用,試求出年利潤(rùn)W(萬(wàn)元)與廣告費(fèi)用x(萬(wàn)元)的函數(shù)關(guān)系式,并計(jì)算每年投入的廣告費(fèi)是多少萬(wàn)元時(shí)所獲得的利潤(rùn)最大?
(3)如果公司希望年利潤(rùn)W(萬(wàn)元)不低于14萬(wàn)元,請(qǐng)你幫公司確定廣告費(fèi)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)為(6,4).
(1)請(qǐng)用直尺(不帶刻度)和圓規(guī)作一條直線AC,它與x軸和y軸的正半軸分別交于點(diǎn)A和點(diǎn)C,且使∠ABC=90°,△ABC與△AOC的面積相等.(作圖不必寫(xiě)作法,但要保留作圖痕跡.)
(2)問(wèn):(1)中這樣的直線AC是否唯一?若唯一,請(qǐng)說(shuō)明理由;若不唯一,請(qǐng)?jiān)趫D中畫(huà)出所有這樣的直線AC,并寫(xiě)出與之對(duì)應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)P是邊長(zhǎng)為5的正方形ABCD內(nèi)一點(diǎn),且PB=3,BF⊥BP于B,若在射線BF上找一點(diǎn)M,使以點(diǎn)B,M,C為頂點(diǎn)的三角形與△ABP相似,BM的值為( )
A. 3 B. C. 3或 D. 3或5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com