【題目】如圖1,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C,OB=OC.點D在函數(shù)圖象上,CD∥x軸,且CD=4,直線1是拋物線的對稱軸,E是拋物線的頂點.
(1)求b、c的值;
(2)如圖1,連接BE,線段OC上的點F關(guān)于直線l的對稱點F'恰好在線段BE上,求點F的坐標(biāo);
(3)如圖2,動點P在線段OB上,過點P作x軸的垂線分別與BC交于點M,與拋物線交于點N.拋物線上有一點Q,使得△PQN與△APM的面積相等,請求出點Q到直線PN的距離.
【答案】(1)b=﹣4,c=﹣5;(2)點F的坐標(biāo)為(0,﹣3);(3)點Q到直線PN的距離為1.
【解析】
(1)CD=4,則函數(shù)對稱軸x=2=﹣b,即:b=﹣4,則函數(shù)表達(dá)式為:y=x2﹣4x+c,OB=OC,則點B坐標(biāo)為(﹣c,0),把點B坐標(biāo)代入函數(shù)表達(dá)式,即可求解;
(2)直線BE的表達(dá)式為:y=3x﹣15,把x=4代入上式得:y=3×4﹣15=﹣3,即:點坐標(biāo)為F′(4,﹣3),即可求解;
(3)S△APM=×PM×AP,S△PQN=×PN×d,利用S△PQN=S△APM,即可求解.
(1)CD=4,則函數(shù)對稱軸x=2=﹣b,即:b=﹣4,
則函數(shù)表達(dá)式為:y=x2﹣4x+c,OB=OC,則點B坐標(biāo)為(﹣c,0),
把點B坐標(biāo)代入函數(shù)表達(dá)式,解得:c=﹣5,
答:b=﹣4,c=﹣5;
(2)二次函數(shù)表達(dá)式為:y=x2+4x﹣5,
函數(shù)對稱軸為x=2,則點E坐標(biāo)為(2,﹣9),
把點E、B坐標(biāo)代入一次函數(shù)表達(dá)式:
y=mx+n得:,解得:,
則直線BE的表達(dá)式為:y=3x﹣15,
由題意得:點F′的橫坐標(biāo)為4,把x=4代入上式得:y=3×4﹣15=﹣3
即:點坐標(biāo)為F′(4,﹣3),
∴點F的坐標(biāo)為(0,﹣3)
(3)設(shè):Q到直線PN的距離為d,點P坐標(biāo)為(m,0),則點N(m,m2﹣4m﹣5),
直線B、C的表達(dá)式為:y=x﹣5,
則點M(m,m﹣5),
S△APM=×PM×AP=(0﹣m+5)(m+1)=﹣(m2﹣4m﹣5),
S△PQN=×PN×d=﹣(m2﹣4m﹣5)d,
∵S△PQN=S△APM,
∴d=1,
點Q到直線PN的距離為1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張圓形紙片,小芳進(jìn)行了如下連續(xù)操作:
(1)將圓形紙片左右對折,折痕為AB,如圖(2)所示.
(2)將圓形紙片上下折疊,使A、B兩點重合,折痕CD與AB相交于M,如圖(3)所示.
(3)將圓形紙片沿EF折疊,使B、M兩點重合,折痕EF與AB相交于N,如圖(4)所示.
(4)連結(jié)AE、AF,如圖(5)所示.
經(jīng)過以上操作小芳得到了以下結(jié)論:
①CD∥EF;②四邊形MEBF是菱形;③△AEF為等邊三角形;④,
以上結(jié)論正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點 O 是△ABC 的邊 AB 上一點,以 OB 為半徑的⊙O 交 BC 于點 D,過點 D 的切線交 AC 于點 E,且 DE⊥AC.
(1)證明:AB=AC;
(2)設(shè) AB=cm,BC=2cm,當(dāng)點 O 在 AB 上移動到使⊙O 與邊 AC 所在直線相切時, 求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù) y=kx+b與反比例函數(shù) y=(x>0)的圖象交于A(m,6)B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).
設(shè)這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一道作業(yè)題:
有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長是多少mm?
小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.
(1)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少mm?請你計算.
(2)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達(dá)到這個最大值時矩形零件的兩條邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個實數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為5,△ABC是⊙O的內(nèi)接三角形,AB=8.AD和過點B的切線互相垂直,垂足為D.
(1)求證:∠BAD+∠C=90°;
(2)求線段AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹AB的高度,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹AB的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com