【題目】某玩具專柜要經(jīng)營(yíng)一種新上市的兒童玩具,進(jìn)價(jià)為20元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件.
(1)寫(xiě)出專柜銷售這種玩具,每天所得的銷售利潤(rùn)W(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該玩具每天的銷售利潤(rùn)最大;
(3)專柜結(jié)合上述情況,設(shè)計(jì)了A、B兩種營(yíng)銷方案: 方案A:該玩具的銷售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;
方案B:每天銷售量不少于10件,且每件玩具的利潤(rùn)至少為25元.
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由.
【答案】
(1)解:由題意可得:
w=(x﹣20)(250﹣10x+250)
=﹣10x2+700x﹣10000;
(2)解:w=﹣10x2+700x﹣10000
=﹣10(x﹣35)2+2250,
所以,當(dāng)x=35時(shí),w有最大值2250,
即銷售單價(jià)為35元時(shí),該文具每天的銷售利潤(rùn)最大;
(3)解:方案A:由題可得20<x≤30,
因?yàn)閍=﹣10<0,對(duì)稱軸為x=35,
拋物線開(kāi)口向下,在對(duì)稱軸左側(cè),w隨x的增大而增大,
所以,當(dāng)x=30時(shí),w取最大值為2000元,
方案B:由題意得: ,
解得:45≤x≤49,
在對(duì)稱軸右側(cè),w隨x的增大而減小,
所以,當(dāng)x=45時(shí),w取最大值為1250元,
因?yàn)?000元>1250元,
所以選擇方案A.
【解析】(1)直接利用每件利潤(rùn)×銷量=總利潤(rùn),進(jìn)而得出函數(shù)關(guān)系式;(2)直接利用配方法求出二次函數(shù)最值即可;(3)首先得出x的取值范圍,進(jìn)而利用二次函數(shù)增減性得出利潤(rùn)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一長(zhǎng)度為10的線段AC的兩個(gè)端點(diǎn)A、C分別在y軸和x軸的正半軸上滑動(dòng),以A為直角頂點(diǎn),AC為直角邊在第一象限內(nèi)作等腰直角△ABC,連接BO.
(1)求OB的最大值;
(2)在AC滑動(dòng)過(guò)程中,△OBC能否恰好為等腰三角形?若能,求出此時(shí)點(diǎn)A的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列條件不能判定△ADB∽△ABC的是( )
A.∠ABD=∠ACB
B.∠ADB=∠ABC
C.AB2=AD?AC
D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=3,AD=4,∠ABC=60°,過(guò)BC的中點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,與DC的延長(zhǎng)線相交于點(diǎn)H.
(1)求證:△BEF≌△CEH;
(2)求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,今年2月20日舉行了襄陽(yáng)市首屆中小學(xué)生經(jīng)典誦讀大賽決賽.某中學(xué)為了選拔優(yōu)秀學(xué)生參加,廣泛開(kāi)展校級(jí)“經(jīng)典誦讀”比賽活動(dòng),比賽成績(jī)?cè)u(píng)定為A,B,C,D,E五個(gè)等級(jí),該校七(1)班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)該校七(1)班共有名學(xué)生;扇形統(tǒng)計(jì)圖中C等級(jí)所對(duì)應(yīng)扇形的圓心角等于度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若A等級(jí)的4名學(xué)生中有2名男生2名女生,現(xiàn)從中任意選取2名參加學(xué)校培訓(xùn)班,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法,求出恰好選到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y,其中x= ﹣ ,y= ﹣ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線相交于點(diǎn)O,將線段OD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D的對(duì)應(yīng)點(diǎn)落在BC延長(zhǎng)線上的點(diǎn)E處,OE交CD于H,連接DE.
(1)求證:DE⊥BC;
(2)若OE⊥CD,求證:2CEOE=CDDE;
(3)若OE⊥CD,BC=3,CE=1,求線段AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=5,BC=3,D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使點(diǎn)A落在點(diǎn)A'處,當(dāng)A'E⊥AC時(shí),A'B= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠C=90°,∠A=60°,AC=2cm.長(zhǎng)為1cm的線段MN在△ABC的邊AB上沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng)(運(yùn)動(dòng)前點(diǎn)M與點(diǎn)A重合).過(guò)M,N分別作AB的垂線交直角邊于P,Q兩點(diǎn),線段MN運(yùn)動(dòng)的時(shí)間為ts.
(1)若△AMP的面積為y,寫(xiě)出y與t的函數(shù)關(guān)系式(寫(xiě)出自變量t的取值范圍);
(2)線段MN運(yùn)動(dòng)過(guò)程中,四邊形MNQP有可能成為矩形嗎?若有可能,求出此時(shí)t的值;若不可能,說(shuō)明理由;
(3)t為何值時(shí),以C,P,Q為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com