【題目】現(xiàn)有一個種植總面積為540 m2的長方形塑料溫棚,分壟間隔套種草莓和西紅柿共24壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于10壟,又不超過14(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤分別如下:

(1)若設草莓共種植了x壟,請說明共有幾種種植方案,分別是哪幾種;

(2)在這幾種種植方案中,哪種方案獲得的利潤最大?最大利潤是多少?

【答案】(1)見解析;(2)方案一即種植西紅柿和草莓各12壟,獲得的利潤最大,最大利潤是3072元.

【解析】

(1)列出一元一次不等式組,求出草莓種植壟數(shù)的取值范圍,就可以找出方案;

(2)分別計算3種方案的利潤,進行比較,可以找出答案.

解:(1)根據(jù)題意可知西紅柿種了(24-x)壟,則15x+30(24-x)≤540,解得x≥12.

又因為x≤14,且x是正整數(shù),

所以x的值為12,13,14.

故共有三種種植方案:

方案一:種植草莓12壟,種植西紅柿12壟;

方案二:種植草莓13壟,種植西紅柿11壟;

方案三:種植草莓14壟,種植西紅柿10壟.

(2)方案一獲得的利潤為12×50×1.6+12×160×1.1=3072();

方案二獲得的利潤為13×50×1.6+11×160×1.1=2976();

方案三獲得的利潤為14×50×1.6+10×160×1.1=2880().

由計算可知,方案一即種植西紅柿和草莓各12壟,獲得的利潤最大,最大利潤是3072元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(本題8分) 甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分. 如圖,甲 在O點正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式 ,已知點O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度1.55m.

(1)當a= 時,①求h的值.②通過計算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點O的水平距離為7m,離地面的高度為 m的Q處時,乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=6,AB=10,D為BC邊的中點,以AD上一點O為圓心的⊙O和AB、BC均相切,則⊙O的半徑為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊的邊長為2,現(xiàn)將等邊放置在平面直角坐標系中,點B和原點重合,點Cx軸正方向上,直線交x軸于點D,交y軸于點E,且如圖,現(xiàn)將等邊從圖1的位置沿x軸正方向以每秒1個單位長度的速度移動,邊AB、AC分別與線段DE交于點G、如圖,同時點P的頂點B出發(fā),以每秒2個單位長度的速度沿折線運動當點P運動到C時即停止活動,也隨之停止移動,設平移的時間為

試求直線DE的解析式;

當點P在線段AC上運動時,設點P與點H的距離為y,求yt的函數(shù)關系式,并寫出定義域;

當點P在線段AB上運動時,中恰好有一個角的度數(shù)為,請直接寫出t的值,不必寫過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在甲、乙兩名同學中選拔一人參加襄陽廣播電臺舉辦“國學風,少年頌”襄陽首屆少年兒童經(jīng)典誦讀大賽.在相同的測試條件下,兩人3次測試成績(單位:分)如下:甲:79,86,82;乙:88,79,90.從甲、乙兩人3次的成績中各隨機抽取一次成績進行分析,求抽到的兩個人的成績都大于80分的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校去年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2400元,購買乙種足球共花費1600元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元.
(1)求購買一個甲種足球、一個乙種足球各需多少元;
(2)今年學校為編排“足球操”,決定再次購買甲、乙兩種足球共50個.如果兩種足球的單價沒有改變,而此次購買甲、乙兩種足球的總費用不超過3500元,那么這所學校最少可購買多少個甲種足球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知相交直線AB和CD及另一直線MN,如果要在MN上找出與AB,CD距離相等的點,則這樣的點至少有_____個,最多有_____個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一面積為5 的等腰三角形,它的一個內(nèi)角是30°,則以它的腰長為邊的正方形的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°

(1) 求證:四邊形ABCD是矩形

(2) DE⊥ACBCE,∠ADB∶∠CDB=2∶3,則∠BDE的度數(shù)是多少?

查看答案和解析>>

同步練習冊答案