【題目】下列方程中,是一元二次方程共有( )
①x2﹣+3=0;②2x2﹣3xy+4=0; ③x2﹣4x+k=0;④x2+mx﹣1=0;⑤3x2+x=20.
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
【答案】A
【解析】
根據(jù)一元二次方程的定義解答,未知數(shù)的最高次數(shù)是2;二次項(xiàng)系數(shù)不為0;是整式方程;含有一個(gè)未知數(shù).由這四個(gè)條件對(duì)四個(gè)選項(xiàng)進(jìn)行驗(yàn)證,滿足這四個(gè)條件者為正確答案.
解:①x2﹣+3=0是一元二次方程,故①正確;
②2x2﹣3xy+4=0是二元二次方程,故②錯(cuò)誤;
③x2﹣4x+k=0是二元二次方程,故③錯(cuò)誤;
④x2+mx﹣1=0是二元二次方程,故④錯(cuò)誤;
⑤3x2+x=20是一元二次方程,故⑤正確;
所以A選項(xiàng)是正確的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一隧道的橫截面是由一段拋物線及矩形的三邊圍成的,隧道寬BC=10米,矩形部分高AB=3米,拋物線型的最高點(diǎn)E離地面OE=6米,按如圖建立一個(gè)以BC為x軸,OE為y軸的直角坐標(biāo)系.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)有雙車道,現(xiàn)有一輛貨運(yùn)卡車高4.5米,寬3米,這輛貨運(yùn)卡車能順利通過(guò)隧道嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(a,b)和點(diǎn)Q(a,b′),給出如下定義:
若b′=,則稱點(diǎn)Q為點(diǎn)P的理想點(diǎn).例如:點(diǎn)(1,2)的理想點(diǎn)的坐標(biāo)是(1,﹣2),點(diǎn)(﹣2,3)的理想點(diǎn)的坐標(biāo)是(﹣2,3).
(1)點(diǎn)(,﹣1)理想點(diǎn)的坐標(biāo)是_____;若點(diǎn)C在函數(shù)y=2x2的圖象上,則它的理想點(diǎn)是A(1,﹣2),B(﹣1,2)中的哪一個(gè)?_____;
(2)若點(diǎn)P在函數(shù)y=﹣2x+4(﹣2≤x≤k,k>﹣2)的圖象上,其理想點(diǎn)為Q:
①若其理想點(diǎn)Q的縱坐標(biāo)b′的取值范圍是﹣6≤b′≤10,求k的值;
②在①的條件下,若點(diǎn)P的理想點(diǎn)Q都不在反比例函數(shù)y=(m<0,x>0)上,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖所示的正方形網(wǎng)格中,每個(gè)網(wǎng)格的單位長(zhǎng)度為1,△ABC的頂點(diǎn)均在格點(diǎn)上,根據(jù)所給的平面直角坐標(biāo)系解答下列問(wèn)題:
(1)A點(diǎn)的坐標(biāo)為________;B點(diǎn)的坐標(biāo)為________;C點(diǎn)的坐標(biāo)為________.
(2)將點(diǎn)A、B、C的橫坐標(biāo)保持不變,縱坐標(biāo)分別乘以-1,分別得點(diǎn)A'、B'、C',并連接A'、B'、C'得△A' B' C',請(qǐng)畫(huà)出△A' B' C'.
(3)△A' B' C'與△ABC的位置關(guān)系是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,陽(yáng)光通過(guò)窗口照到教室內(nèi),豎直窗框在地面上留下2.1 m長(zhǎng)的影子如圖所示,已知窗框的影子DE的點(diǎn)E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,放在直角坐標(biāo)系中的正方形ABCD邊長(zhǎng)為4,現(xiàn)做如下實(shí)驗(yàn):拋擲一枚均勻的正四面體骰子(它有四個(gè)頂點(diǎn),各頂點(diǎn)的點(diǎn)數(shù)分別是1至4這四個(gè)數(shù)字中一個(gè)),每個(gè)頂點(diǎn)朝上的機(jī)會(huì)是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點(diǎn)數(shù)作為直角坐標(biāo)中P點(diǎn)的坐標(biāo))第一次的點(diǎn)數(shù)作橫坐標(biāo),第二次的點(diǎn)數(shù)作縱坐標(biāo)).
(1)求P點(diǎn)落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率.
(2)將正方形ABCD平移整數(shù)個(gè)單位,則是否存在一種平移,使點(diǎn)P落在正方形ABCD
面上的概率為0.75;若存在,指出其中的一種平移方式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,分析下列五個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有________個(gè)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(滿分12分)在平面直角坐標(biāo)系中,拋物線與軸的兩個(gè)交點(diǎn)
分別為A(-3,0)、B(1,0),過(guò)頂點(diǎn)C作CH⊥x軸于點(diǎn)H.
(1)直接填寫(xiě):= ,b= ,頂點(diǎn)C的坐標(biāo)為 ;
(2)在軸上是否存在點(diǎn)D,使得△ACD是以AC為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;
(3)若點(diǎn)P為x軸上方的拋物線上一動(dòng)點(diǎn)(點(diǎn)P與頂點(diǎn)C不重合),PQ⊥AC于點(diǎn)Q,當(dāng)△PCQ與△ACH相似時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com