科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2012-2013學年山東臨沭第三初級中學九年級10月月考數學試卷(帶解析) 題型:解答題
閱讀下面例題的解答過程,體會并其方法,并借鑒例題的解法解方程。
例:解方程x2--1=0.
解:(1)當x-1≥0即x≥1時,= x-1。
原化為方程x2-(x-1)-1=0,即x2-x=0
解得x1 =0.x2=1
∵x≥1,故x =0舍去,
∴x=1是原方程的解。
(2)當x-1<0即x<1時,=-(x-1)。
原化為方程x2+(x-1)-1=0,即x2+x-2=0
解得x1 =1.x2=-2
∵x<1,故x =1舍去,
∴x=-2是原方程的解。
綜上所述,原方程的解為x1 =1.x2=-2
解方程x2--4=0.
查看答案和解析>>
科目:初中數學 來源:2012-2013學年山東臨沭第三初級中學九年級10月月考數學試卷(解析版) 題型:解答題
閱讀下面例題的解答過程,體會并其方法,并借鑒例題的解法解方程。
例:解方程x2--1=0.
解:(1)當x-1≥0即x≥1時,= x-1。
原化為方程x2-(x-1)-1=0,即x2-x=0
解得x1 =0.x2=1
∵x≥1,故x =0舍去,
∴x=1是原方程的解。
(2)當x-1<0即x<1時,=-(x-1)。
原化為方程x2+(x-1)-1=0,即x2+x-2=0
解得x1 =1.x2=-2
∵x<1,故x =1舍去,
∴x=-2是原方程的解。
綜上所述,原方程的解為x1 =1.x2=-2
解方程x2--4=0.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
關于x的方程:x+=c+的解是x1=c,x2=;
x-=c-(即x+=c+)的解是x1=c,x2=-;
x+=c+的解是:x1=c,x2=,…
(1)觀察上述方程及其解的特征,直接寫出關于x的方程x+=c+(m≠0)的解,并利用“方程的解”的概念進行驗證;
(2)通過(1)的驗證所獲得的結論,你能解出關于x的方程:x+=a+的解嗎?若能,請求出此方程的解;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源:2009年北京市通州區(qū)中考數學二模試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com