【題目】如圖,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,則下列結(jié)論:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】C
【解析】
①在AE取點(diǎn)F,使EF=BE.利用已知條件AB=AD+2BE,可得AD=AF,進(jìn)而證出2AE=AB+AD;
②在AB上取點(diǎn)F,使BE=EF,連接CF.先由SAS證明△ACD≌△ACF,得出∠ADC=∠AFC;再根據(jù)線(xiàn)段垂直平分線(xiàn)、等腰三角形的性質(zhì)得出∠CFB=∠B;然后由鄰補(bǔ)角定義及四邊形的內(nèi)角和定理得出∠DAB+∠DCB=180°;
③根據(jù)全等三角形的對(duì)應(yīng)邊相等得出CD=CF,根據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì)得出CF=CB,從而CD=CB;
④由于△CEF≌△CEB,△ACD≌△ACF,根據(jù)全等三角形的面積相等易證S△ACE-S△BCE=S△ADC.
解:①在AE取點(diǎn)F,使EF=BE,
∵AB=AD+2BE=AF+EF+BE,EF=BE,
∴AB=AD+2BE=AF+2BE,
∴AD=AF,
∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,
∴AE=(AB+AD),故①正確;
②在AB上取點(diǎn)F,使BE=EF,連接CF.
在△ACD與△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,
∴△ACD≌△ACF,
∴∠ADC=∠AFC.
∵CE垂直平分BF,
∴CF=CB,
∴∠CFB=∠B.
又∵∠AFC+∠CFB=180°,
∴∠ADC+∠B=180°,
∴∠DAB+∠DCB=360-(∠ADC+∠B)=180°,故②正確;
③由②知,△ACD≌△ACF,∴CD=CF,
又∵CF=CB,
∴CD=CB,故③正確;
④易證△CEF≌△CEB,
所以S△ACE-S△BCE=S△ACE-S△FCE=S△ACF,
又∵△ACD≌△ACF,
∴S△ACF=S△ADC,
∴S△ACE-S△BCE=S△ADC,故④錯(cuò)誤;
即正確的有3個(gè),
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的頂點(diǎn)A在原點(diǎn),B、C坐標(biāo)分別為B(3,0),C(2,2),將△ABC向左平移1個(gè)單位后再向下平移2單位,可得到△A′B′C′.
(1)請(qǐng)畫(huà)出平移后的△ABC的圖形
(2)寫(xiě)出△A′B′C′各個(gè)頂點(diǎn)的坐標(biāo);
(3)在x軸上是否存在點(diǎn)P,值,若存在,請(qǐng)寫(xiě)出P點(diǎn)的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋子里裝有4個(gè)小球,分別標(biāo)有數(shù)字1,2,3,4;這些小球除所標(biāo)數(shù)字不同外,其余完全相同,甲乙兩人每次同時(shí)從袋中各隨機(jī)摸出一個(gè)小球,記下球上的數(shù)字,并計(jì)算它們的積.
請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求兩數(shù)積是8的概率;
甲乙兩人想用這種方式做游戲,他們規(guī)定,當(dāng)兩數(shù)之積是偶數(shù)時(shí),甲得1分,當(dāng)兩數(shù)之積是奇數(shù)時(shí),乙得3分,你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由,若你認(rèn)為不公平,請(qǐng)修改得分規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,3),B(4,0),試在x軸上找點(diǎn)P使△ABP為等腰三角形,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OC是∠AOB的角平分線(xiàn),P是OC上一點(diǎn).PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一點(diǎn),連接DF,EF.求證:DF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】山地自行車(chē)越來(lái)越受到中學(xué)生的喜愛(ài),各種品牌相繼投放市場(chǎng),某車(chē)行經(jīng)營(yíng)的A型車(chē)去年銷(xiāo)售總額為5萬(wàn)元,今年每輛銷(xiāo)售價(jià)比去年降低400元,若賣(mài)出的數(shù)量相同,銷(xiāo)售總額將比去年減少20%.
(1)今年A型車(chē)每輛售價(jià)多少元?(用列方程的方法解答)
(2)該車(chē)行計(jì)劃新進(jìn)一批A型車(chē)和新款B型車(chē)共60輛,且B型車(chē)的進(jìn)貨數(shù)量不超過(guò)A型車(chē)數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車(chē)獲利最多?
A,B兩種型號(hào)車(chē)的進(jìn)貨和銷(xiāo)售價(jià)格如下表:
A型車(chē) | B型車(chē) | |
進(jìn)貨價(jià)格(元) | 1100 | 1400 |
銷(xiāo)售價(jià)格(元) | 今年的銷(xiāo)售價(jià)格 | 2000 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=9,BC=12,∠B=∠C,點(diǎn)D從B出發(fā)以每秒2厘米的速度在線(xiàn)段BC上從B向C方向運(yùn)動(dòng),點(diǎn)E同時(shí)從C出發(fā)以每秒2厘米的速度在線(xiàn)段AC上從C向A運(yùn)動(dòng),連接AD、DE.
(1)運(yùn)動(dòng) 秒時(shí),AE=DC(不必說(shuō)明理由)
(2)運(yùn)動(dòng)多少秒時(shí),∠ADE=90°-∠BAC,并請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=90°,OA=36cm,OB=12cm,一機(jī)器人在點(diǎn)B處看見(jiàn)一個(gè)小球從點(diǎn)A出發(fā)沿著AO方向勻速滾向點(diǎn)O,機(jī)器人立即從點(diǎn)B出發(fā),沿直線(xiàn)勻速前進(jìn)攔截小球,恰好在點(diǎn)C處截住了小球.如果小球滾動(dòng)的速度與機(jī)器人行走的速度相等,那么機(jī)器人行走的路程BC是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知兩條直線(xiàn)AB,CD被直線(xiàn)EF所截,分別交于點(diǎn)E,點(diǎn)F,EM平分∠AEF交CD于點(diǎn)M,且∠FEM=∠FME.
(1)直線(xiàn)AB與直線(xiàn)CD是否平行,說(shuō)明你的理由;
(2)如圖2,點(diǎn)G是射線(xiàn)MD上一動(dòng)點(diǎn)(不與點(diǎn)M,F重合),EH平分∠FEG交CD于點(diǎn)H,過(guò)點(diǎn)H作HN⊥EM于點(diǎn)N,設(shè)∠EHN=α,∠EGF=β.
①當(dāng)點(diǎn)G在點(diǎn)F的右側(cè)時(shí),若β=60°,求α的度數(shù);
②當(dāng)點(diǎn)G在運(yùn)動(dòng)過(guò)程中,α和β之間有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com