A. | $\frac{BD}{BC}$=$\frac{\sqrt{5}-1}{2}$ | B. | AD,AE將∠BAC三等分 | ||
C. | △ABE≌△ACD | D. | S△ADH=S△CEG |
分析 由題意知AB=AC、∠BAC=108°,根據(jù)中垂線性質(zhì)得∠B=∠DAB=∠C=∠CAE=36°,從而知△BDA∽△BAC,得$\frac{BD}{BA}$=$\frac{BA}{BC}$,由∠ADC=∠DAC=72°得CD=CA=BA,進(jìn)而根據(jù)黃金分割定義知$\frac{BD}{BA}$=$\frac{BA}{BC}$=$\frac{\sqrt{5}-1}{2}$,可判斷A;根據(jù)∠DAB=∠CAE=36°知∠DAE=36°可判斷B;根據(jù)∠BAD+∠DAE=∠CAE+∠DAE=72°可得∠BAE=∠CAD,可證△BAE≌△CAD,即可判斷C;由△BAE≌△CAD知S△BAD=S△CAE,根據(jù)DH垂直平分AB,EG垂直平分AC可得S△ADH=S△CEG,可判斷D.
解答 解:∵∠B=∠C=36°,
∴AB=AC,∠BAC=108°,
∵DH垂直平分AB,EG垂直平分AC,
∴DB=DA,EA=EC,
∴∠B=∠DAB=∠C=∠CAE=36°,
∴△BDA∽△BAC,
∴$\frac{BD}{BA}$=$\frac{BA}{BC}$,
又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC-∠BAD=72°,
∴∠ADC=∠DAC,
∴CD=CA=BA,
∴BD=BC-CD=BC-AB,
則$\frac{BC-BA}{BA}=\frac{BA}{BC}$=$\frac{\sqrt{5}-1}{2}$,即$\frac{BD}{BA}$=$\frac{BA}{BC}$=$\frac{\sqrt{5}-1}{2}$,故A錯(cuò)誤;
∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°,
∴∠DAE=∠BAC-∠DAB-∠CAE=36°,
即∠DAB=∠DAE=∠CAE=36°,
∴AD,AE將∠BAC三等分,故B正確;
∵∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°,
∴∠BAE=∠CAD,
在△BAE和△CAD中,
∵$\left\{\begin{array}{l}{∠B=∠C}\\{AB=AC}\\{∠BAE=∠CAD}\end{array}\right.$,
∴△BAE≌△CAD,故C正確;
由△BAE≌△CAD可得S△BAE=S△CAD,即S△BAD+S△ADE=S△CAE+S△ADE,
∴S△BAD=S△CAE,
又∵DH垂直平分AB,EG垂直平分AC,
∴S△ADH=$\frac{1}{2}$S△ABD,S△CEG=$\frac{1}{2}$S△CAE,
∴S△ADH=S△CEG,故D正確.
故選:A.
點(diǎn)評(píng) 本題主要考查黃金分割、全等三角形的判定與性質(zhì)及線段的垂直平分線的綜合運(yùn)用,掌握其性質(zhì)、判定并靈活應(yīng)用是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 1+$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 8 | C. | 2或8 | D. | 2<O1O2<8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 7.6×10-9 | B. | 7.6×10-8 | C. | 7.6×109 | D. | 7.6×108 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a2+a2=a4 | B. | (-b2)3=-b6 | C. | 2x•2x2=2x3 | D. | (m-n)2=m2-n2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com