【題目】如圖,AB是半圓O的直徑,C是半圓上一個動點(不與點A,B重合),D是弦AC上一點,過點D作DE⊥AB,垂足為E,過點C作半圓O的切線,交ED的延長線于點F.
(1)求證:FC=FD.
(2)①當∠CAB的度數(shù)為 時,四邊形OEFC是矩形;②若D是弦AC的中點,⊙O的半徑為5,AC=8,則FC的長為 .
【答案】(1)見解析;(2)①45;② .
【解析】
(1)證明∠FDC=∠FCD,即可求解;
(2)①當∠CAB=45°時,∠COB=90°,即可求解;
②連接OD,過點F作FM⊥CD,垂足為M,設∠FDC=α,由D是弦AC的中點,則OD⊥AC,求出cosα=,繼而根據(jù)FD=即可求解.
(1)∵FC是圓的切線,
∴∠FCD+∠ACO=90°,
∵FE⊥BA,∴∠ADC+∠CAO=90°,
而∠CAO=∠ACO,∠ADE=∠FDC,
∴∠FDC=∠FCD,
∴FC=FD;
(2)①當∠CAB=45°時,∠COB=90°,
則四邊形OEFC是矩形,
故答案為:45;
②連接OD,過點F作FM⊥CD,垂足為M,
設∠FDC=α,
∵ FD=FC,∴DM=CD,
∵D是弦AC的中點,
∴OD⊥AC,AD=DC,
∴∠ADE+∠EDO=90°,
∵∠DEO=90°,
∴∠EDO+∠EOD=90°,
∴∠ADE=∠AOD=∠FDC=α,
∵AD=CD=AC=4,OA=5,
∴DO==3,
∴cosα=,
∴在△FDC中,FD==,
∴FC=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(4,0)、C(0,3)三點.
(1)求該拋物線的解析式;
(2)如圖,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最小?若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.
(3)在(2)的條件下,點Q是線段OB上一動點,當△BPQ與△BAC相似時,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(14分)如圖,在邊長為2的正方形ABCD中,G是AD延長線上的一點,且DG=AD,動點M從A出發(fā),以每秒1個單位的速度沿著A→C→G的路線向G點勻速運動(M不與A、G重合),設運動時間為t秒。連接BM并延長交AG于N。
(1)是否存在點M,使△ABM為等腰三角形?若存在,分析點M的位置;若不存在,請說明理由;
(2)當點N在AD邊上時,若BN⊥HN,NH交∠CDG的平分線于H,求證:BN=NH;
(3)過點M分別用AB、AD的垂線,垂足分別為E、F,矩形AEMF與△ACG重疊部分的面積為S,求S的最大值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,的頂點在函數(shù)的圖象上,,邊在軸上,點為斜邊的中點,連續(xù)并延長交軸于點,連結,若的面積為,則的值為 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A1,A2,A3,… 和B1,B2,B3,… 分別在直線和x軸上.△OA1 B1,△B1 A2 B2,△B2 A3 B3,…都是等腰直角三角形.如果點A1(1,1),那么點A2019的縱坐標是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點A、C為圓心,以大于AC的長為半徑畫弧,兩弧相交于點D和E,作直線DE交AB于點F,交AC于點G,連接CF,以點C為圓心,以CF的長為半徑畫弧,交AC于點H.若∠A=30°,BC=2,則AH的長是( )
A. B. 2C. +1D. 2﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王電子產(chǎn)品專柜以20元/副的價格批發(fā)了某新款耳機,在試銷的60天內整理出了銷售數(shù)據(jù)如下
銷售數(shù)據(jù)(第x天) | 售價(元) | 日銷售量(副) |
1≤x<35 | x+30 | 100﹣2x |
35≤x≤60 | 70 | 100﹣2x |
(1)若試銷階段每天的利潤為W元,求出W與x的函數(shù)關系式;
(2)請問在試銷階段的哪一天銷售利潤W可以達到最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某型號新能源純電動汽車充滿電后,蓄電池剩余電量(千瓦時)關于已行駛路程 (千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出蓄電池剩余電量為35千瓦時時汽車已行駛的路程,當時,求1千瓦時的電量汽車能行駛的路程;
(2)當時求關于的函數(shù)表達式,并計算當汽車已行駛180千米時,蓄電池的剩余電量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點A、D為圓心,以大于的長為半徑在AD的兩側作弧,交于兩點M、N;第二步,連結MN,分別交AB、AC于點E、F;第三步,連結DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com