在Rt△ABC中,∠C=90°,AC=15,BC=12.
(1)求AB的長(zhǎng);
(2)求sinA、cosA的值;
(3)求sin2A+cos2A的值;
(4)比較sinA、cosB的大。

【答案】分析:根據(jù)題中所給的條件,在直角三角形中解題,根據(jù)角的正弦值與三角形邊的關(guān)系及勾股定理,然后再代入三角函數(shù)進(jìn)行一一求解.
解答:解:(1)由勾股定理得,
AB====3;

(2)在Rt△ABC中有,
cosA===
sinA===;

(3)在Rt△ABC中有,
sin2A+cos2A=(2+(2=1;

(4)由上題值,sinA>cosB.
點(diǎn)評(píng):本題考查了解直角三角形的能力,主要考查解直角三角形的定義,由直角三角形已知元素求未知元素的過(guò)程,只要理解直角三角形中邊角之間的關(guān)系即可求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長(zhǎng)為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案