【題目】如圖,△ABC是等腰三角形,AB=AC=5,BC=6,E為BA延長線上的一點,AE= AB,D為BC的中點,則DE的長為

【答案】
【解析】解:連接AD,過點E作EN⊥BC于點N,
∵AB=AC=5,D為BC的中點,
∴AD⊥BC,BD=DC=3,
∵AB=AC=5,
∴AD=4,
∵EN⊥BC,
∴AD∥EN,
∴△ABD∽△EBN,
= = ,
= =
解得:BN=4.5,EN=6,
∴DN=1.5,
∴DE= = =
所以答案是:
【考點精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)和勾股定理的概念的相關(guān)知識可以得到問題的答案,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為n的正方形OABC的邊OA,OC在坐標(biāo)軸上,點A1 , A2 , …,An1為OA的n等分點,點B1 , B2 , …,Bn1為CB的n等分點,連結(jié)A1B1 , A2B2 , …,An1Bn1 , 分別交曲線y= (x>0)于點C1 , C2 , …,Cn1 . 若C15B15=16C15A15 , 則n的值為 . (n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形ABCD中,AD∥BC,AB=4,AD=3,AB⊥AC,AC平分∠DCB,過點DE∥AB,分別交AC、BC于F、E,設(shè) = , = .求:
(1)向量 (用向量 、 表示);
(2)tanB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Word文本中的圖形,在圖形格式中大小菜單下顯示有圖形的絕對高度和絕對寬度,同一個圖形隨其放置方向的變化,所顯示的絕對高度和絕對寬度也隨之變化.如圖①、②、③是同一個三角形以三條不同的邊水平放置時,它們所顯示的絕對高度和絕對寬度如下表,現(xiàn)有△ABC,已知AB=AC,當(dāng)它以底邊BC水平放置時(如圖④),它所顯示的絕對高度和絕對寬度如下表,那么當(dāng)△ABC以腰AB水平放置時(如圖⑤),它所顯示的絕對高度和絕對寬度分別是(

圖形

圖①

圖②

圖③

圖④

圖⑤

絕對高度

1.50

2.00

1.20

2.40

?

絕對寬度

2.00

1.50

2.50

3.60

?


A.3.60和2.40
B.2.56和3.00
C.2.56和2.88
D.2.88和3.00

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點D位于△ABC邊AC上,已知AB是AD與AC的比例中項.
(1)求證:∠ACB=∠ABD;
(2)現(xiàn)有點E、F分別在邊AB、BC上如圖2,滿足∠EDF=∠A+∠C,當(dāng)AB=4,BC=5,CA=6時,求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動:拼圖中的數(shù)學(xué) 數(shù)學(xué)活動課上,老師提出如下問題:
用5個邊長為1的小正方形組合一個圖形(相互之間不能重疊),然后將組合后的圖形剪拼成一個大的正方形.
合作交流:“實踐”小組:我們組合成的圖形如圖(1)所示,剪拼成大的正形的過程如圖(2),圖(3)所示.“興趣”小組:我們組合成的圖形如圖(4)所示,但我們未能將其剪拼成大的正方形.
任務(wù):請你幫助“興趣”小組的同學(xué),在圖(4)中畫出剪拼線,在圖(5)中畫出剪拼后的正方形.要求:剪拼線用虛線表示,剪拼后的大正方形用實線表示.

應(yīng)用遷移:如圖(6),∠A=∠B=∠C=∠D=∠F=90°,AB=AF=2,EF=ED=1.
請你將該圖進(jìn)行分割,使得分割后的各部分恰好能拼成一個正方形,請你在圖(5)中畫出拼圖示意圖(拼圖的各部分不能互相重疊,不能留有空隙,不要求進(jìn)行說理或證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列正方形網(wǎng)格的每個小正方形的邊長均為1,⊙O的半徑為n≥8 .規(guī)定:頂點既在圓上又是正方形格點的直角三角形稱為“圓格三角形”,請按下列要求各畫一個“圓格三角形”,并用陰影表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c圖象如圖所示,則一次函數(shù)y=﹣bx﹣4ac+b2與反比例函數(shù)y= 在同一坐標(biāo)系內(nèi)的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“蘭州中山橋“位于蘭州濱河路中段白塔山下、金城關(guān)前,是黃河上第一座真正意義上的橋梁,有“天下黃河第一橋“之美譽.它像一部史詩,記載著蘭州古往今來歷史的變遷.橋上飛架了5座等高的弧形鋼架拱橋. 小蕓和小剛分別在橋面上的A,B兩處,準(zhǔn)備測量其中一座弧形鋼架拱梁頂部C處到橋面的距離AB=20m,小蕓在A處測得∠CAB=36°,小剛在B處測得∠CBA=43°,求弧形鋼架拱梁頂部C處到橋面的距離.(結(jié)果精確到0.1m)(參考數(shù)據(jù)sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)

查看答案和解析>>

同步練習(xí)冊答案