【題目】已知AB=2,CAB上一點,四邊形ACDE和四邊形CBFG,都是正方形,設(shè)BC=x,

1AC=______;

2)設(shè)正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數(shù)解析式為S=_____.

3)總面積S有最大值還是最小值?這個最大值或最小值是多少?

4)總面積S取最大值或最小值時,點CAB的什么位置?

【答案】(1)AC=2-x(0≤x≤2)(2)S=2+2(3)4(4)當(dāng)x=1時,C點恰好在AB的中點上;當(dāng)x=0時,C點恰好在B處;當(dāng)x=2時,C點恰好在A處

【解析】試題分析:(1)、根據(jù)AB=2得出AC的長度;(2)、根據(jù)總面積等于兩個正方形的面積之和得出函數(shù)解析式;(3)、根據(jù)二次函數(shù)的增減性得出面積的最大值和最小值;(4)、根據(jù)最值時x的值得出AC的長度,從而得出點C的位置.

試題解析:(1)、當(dāng)BC=x時,AC=2-x(0≤x≤2);

(2)、S△CDE=,S△BFG=, 因此,S=+=2-4x+4=2+2,

畫出函數(shù)S=+2(0≤x≤2)的圖象如圖:

(3)、由圖象可知:當(dāng)x=1時, ;當(dāng)x=0或x=2時, ;

(4)、當(dāng)x=1時,C點恰好在AB的中點上;當(dāng)x=0時,C點恰好在B處;當(dāng)x=2時,C點恰好在A處.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明租用共享單車從家出發(fā),勻速騎行到相距2400米的郵局辦事.小明出發(fā)的同時,他的爸爸以每分鐘100米的速度從郵局沿同一條道路步行回家,小明在郵局停留了2分鐘后沿原路按原速返回.設(shè)他們出發(fā)后經(jīng)過t(分)時,小明與家之間的距離為s1(米),小明爸爸與家之間的距離為s2(米),圖中折線OABD,線段EF分別表示s1,s2t之間的函數(shù)關(guān)系的圖象.

1)求s1t之間的函數(shù)表達式;

2)小明從家出發(fā),經(jīng)過_______分在返回途中追上爸爸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線ABx軸于點A4 ,0),交y軸于點B0 ,4),

1如圖,若C的坐標(biāo)為(-1, ,0),且AHBC于點HAHOB于點P,試求點P的坐標(biāo);

2在(1)的條件下,如圖2,連接OH,求證:∠OHP=45°

3如圖3,若點DAB的中點,點My軸正半軸上一動點,連結(jié)MD,過點DDNDMx軸于N點,當(dāng)M點在y軸正半軸上運動的過程中,式子的值是否發(fā)生改變?如發(fā)生改變,求出該式子的值的變化范圍;若不改變,求該式子的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知一次函數(shù)k≠0)的圖象與x軸、y軸分別交于AB兩點,且與反比例函數(shù)m≠0)的圖象在第一象限交于C點,CD垂直于x軸,垂足為D.若OA=OB=OD=1

1)求點ABD的坐標(biāo);

2)求一次函數(shù)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B50°,∠C110°,∠D90°,AEBCAF是∠BAD的平分線,與邊BC交于點F.求∠EAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀書月活動中,學(xué)校準(zhǔn)備購買一批課外讀物,為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次調(diào)查中,一共調(diào)查了多少名同學(xué);

2)條形統(tǒng)計圖中,m,n的值;

3)扇形統(tǒng)計圖中,求出藝術(shù)類讀物所在扇形的圓心角的度數(shù);

4)學(xué)校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校應(yīng)購買其他類讀物多少冊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EFAB,CDAB,下列說法:①EFCD;②∠B+BDG180°;③若∠1=∠2,則∠1=∠BEF;④若∠ADG=∠B,則∠DGC+ACB180°,其中說法正確的是( 。

A. ①②B. ③④C. ①②③D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABCD,∠A=∠C=100°,E、FCD上,且滿足∠DBF=∠ABD,BE平分∠CBF

1)直線ADBC有何位置關(guān)系?請說明理由.

2)求∠DBE的度數(shù).

3)若把AD左右平行移動,在平行移動AD的過程中,是否存在某種情況,使∠BEC=ADB?若存在,求出此時∠ADB的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,邊長為6,DBC邊上的動點,∠EDF=60°

1)求證:BDE∽△CFD;

2)當(dāng)BD=1CF=3時,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案