【題目】如圖,拋物線=與軸交于點,其對稱軸為直線,結(jié)合圖象分析下列結(jié)論:
① ; ② ;
③ >0; ④當時,隨的增大而增大;
⑤ ≤(m為實數(shù)),其中正確的結(jié)論有( )
A.2個B.3個C.4個D.5個
【答案】B
【解析】
根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),利用二次函數(shù)的性質(zhì)可以判斷各個小題中的結(jié)論是否正確,從而可以解答本題.
∵拋物線y=ax2+bx+c(a≠0)與x軸交于點(-3,0),其對稱軸為直線,
∴拋物線y=ax2+bx+c(a≠0)與x軸交于點(-3,0)和(2,0),且=,
∴a=b,
由圖象知:a<0,c>0,b<0,
∴abc>0,故結(jié)論①正確;
∵拋物線y=ax2+bx+c(a≠0)與x軸交于點(-3,0),
∴9a-3b+c=0,
∵a=b,
∴c=-6a,
∴3a+c=-3a>0,故結(jié)論②正確;
∵當時,y=>0,
∴<0,故結(jié)論③錯誤;
當x<時,y隨x的增大而增大,當<x<0時,y隨x的增大而減小,故結(jié)論④錯誤;
∵a=b,
∴≤可換成≤,
∵a<0,
∴可得≥-1,
即4m2+4m+1≥0
(2m+1)2≥0,故結(jié)論⑤正確;
綜上:正確的結(jié)論有①②⑤,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在雙曲線y=(k<0)上,連接OA,分別以點O和點A為圓心,大于OA的長為半徑作弧,兩弧相交于D,E兩點,直線DE交x軸于點B,交y軸于點C(0,3),連接AB.若AB=1,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P以1cm/秒的速度沿折線BE-ED-DC運動到點C時停止,點Q以2cm/秒的速度沿BC運動到點C時停止,設P、Q同時出發(fā)t秒時,BPQ的面積為ycm2,已知y與t的函數(shù)關系圖象如圖2所示(其中曲線OG為拋物線的一部分,其余各部分均為線段)所示,則下列結(jié)論:①BEBC;②當t6秒時,ABE PQB;③點P運動了18秒;④當t秒時,ABE∽QBP.其中正確的是( ).
A.①②B.①③④C.③④D.①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一款創(chuàng)意型壁燈,示意圖如圖2所示,∠BAF=150°,燈臂BC=0.2米,不使用時BC‖AF,人在床上閱讀時,將繞點B旋轉(zhuǎn)至,,書本到地面距離DE=1米,C,,D三點恰好在同一直線上,且,則此時固定點A到地面的距離________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C = 90°,以AC為直徑的⊙O交AB于點D,連接OD,點E在BC上, B E=DE.
(1)求證:DE是⊙O的切線;
(2)若BC=6,求線段DE的長;
(3)若∠B=30°,AB =8,求陰影部分的面積(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作DE⊥AB,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若DE= ,∠C=30°,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解初中學生每天在校體育活動的時間(單位:h),隨機調(diào)査了該校的部分初中學生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:
(Ⅰ)本次接受調(diào)查的初中學生人數(shù)為___________,圖①中m的值為_____________;
(Ⅱ)求統(tǒng)計的這組每天在校體育活動時間數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)統(tǒng)計的這組每天在校體育活動時間的樣本數(shù)據(jù),若該校共有800名初中學生,估計該校每天在校體育活動時間大于1h的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知函數(shù)y=2x與反比例函數(shù)y=(x>0)的圖象交于點A,將y=2x的圖象向下平移6個單位后與反比例函數(shù)y═(x>0)交于點B,與x軸交于點C,若OA=2BC,則k=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com