【題目】如圖,,、是對角線上兩點,.

(1)求證:四邊形是平行四邊形.

(2).,,的面積.

【答案】1)證明見詳解;(212

【解析】

1)先連接BD,交ACO,由于四邊形ABCD是平行四邊形,易知OB=ODOA=OC,而AE=CF,根據(jù)等式性質(zhì)易得OE=OF,即可得出結(jié)論.

2)由AE=CF,OE=OF,EF=2AE=2,得出AE=CF=OE=OF=1,AC=4CE=3,證出△BCE是等腰直角三角形,得出BE=CE=3,得出ABCD的面積=2ABC的面積=2××AC×BE,即可得出結(jié)果.

1)證明:連接BD,交ACO,如圖所示:

∵四邊形ABCD是平行四邊形,

OB=OD,OA=OC,

AE=CF,

OA-AE=OC-CF

OE=OF,

∴四邊形BFDE是平行四邊形;

2)解:∵AE=CFOE=OF,EF=2AE=2

AE=CF=OE=OF=1

AC=4,CE=3

∵∠ACB=45°,BEAC

∴△BCE是等腰直角三角形,

BE=CE=3,

∵四邊形ABCD是平行四邊形,

ABCD的面積=2ABC的面積=2××AC×BE=4×3=12

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 的邊長為1,其面積為 S1,以CD 為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積記為 S2,,按此規(guī)律繼續(xù)下去,則 S9的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點坐標為M(1,0),直線與該二次函數(shù)的圖象交于A,B兩點,其中A點的坐標為(3,-4),B點在y軸上.

(1)求m的值及這個二次函數(shù)的解析式;

(2)在x軸上找一點Q,使QAB的周長最小,并求出此時Q點坐標;

(3)若P(t,0)是x軸上的一個動點,過Px軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點.

①設(shè)線段DE的長為h,當0<t<3時,求ht之間的函數(shù)關(guān)系式;

②若直線AB與拋物線的對稱軸交點為N,問是否存在一點P,使以MN、D、E為頂點的四邊形是平行四邊形?若存在,請求出此時P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD,AB=4,點G是射線AB上的一個動點,以DG為邊向右作正方形DGEF,作EH⊥AB于點H.

(1)若點G在點B的右邊.試探索:EHBG的值是否為定值,若是,請求出定值;若不是,請說明理由.

(2)連接EB,在G點的整個運動(點G與點A重合除外)過程中,求∠EBH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線上部分點的橫坐標,縱坐標的對應(yīng)值如下表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

小聰觀察上表,得出下面結(jié)論:①拋物線與x軸的一個交點為(3,0); ②函數(shù)的最大值為6;③拋物線的對稱軸是④在對稱軸左側(cè),yx增大而增大.其中正確有( )

A. ①② B. ①③ C. ①②③ D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB邊為直徑的O經(jīng)過點P,C是O上一點,連結(jié)PC交AB于點E,且ACP=60°,PA=PD.

(1)試判斷PD與O的位置關(guān)系,并說明理由;

(2)若點C是弧AB的中點,已知AB=4,求CECP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標系xOy中,點A(-4,0),點B在直線y=x+2A、B兩點間的距離最小時,點B的坐標是(

A. (,) B. (,) C. (-3,-1) D. (-3,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明每天上午9時騎自行車離開家,15時回家,他描繪了離家的距與時間的變化情況.

(1)圖象表示哪兩個變量的關(guān)系?哪個是自變量?哪個是因變量?

(2)10時和13時,他分別離家多遠?

(3)他到達離家最遠的地方時什么時間?離家多遠?

(4)11時到12時他行駛了多少千米?

(5)他由離家最遠的地方返回的平均速度是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列圖形,它是把一個三角形分別連接其三邊中點,構(gòu)成4個小三角形,挖去中間的一個小三角形(如圖1);對剩下的三個小三角形再分別重復(fù)以上做法,將這種做法繼續(xù)下去(如圖2,圖3…).觀察規(guī)律解答以下各題:

……

(1)填寫下表:

圖形序號

挖去三角形的個數(shù)

1

1

2

1+3

3

1+3+9

4

(2)根據(jù)這個規(guī)律,求圖n中挖去三角形的個數(shù)fn(用含n的代數(shù)式表示);

(3)若圖n+1中挖去三角形的個數(shù)為fn+1,求fn+1-fn

查看答案和解析>>

同步練習冊答案