【題目】在北京市開展的“首都少年先鋒崗”活動中,某數(shù)學小組到人民英雄紀念碑站崗執(zhí)勤,并在活動后實地測量了紀念碑的高度. 方法如下:如圖,首先在測量點A處用高為1.5m的測角儀AC測得人民英雄紀念碑MN頂部M的仰角為35°,然后在測量點B處用同樣的測角儀BD測得人民英雄紀念碑MN頂部M的仰角為45°,最后測量出A,B兩點間的距離為15m,并且N,B,A三點在一條直線上,連接CD并延長交MN于點E. 請你利用他們的測量結果,計算人民英雄紀念碑MN的高度.
(參考數(shù)據(jù):sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)
【答案】人民英雄紀念碑MN.的高度約為36.5米.
【解析】試題分析:由題意得,四邊形ACDB,ACEN為矩形,從而得EN=AC=1.5.AB=CD=15,在Rt△MED中,由題意可得ME=DE,設ME=DE=x,則EC=x+15,在Rt△MEC中,可得ME=ECtan∠MCE,從而有x≈0.7(x+15),求出x的值,從而得MN=ME+EN≈36.5 .
試題解析:由題意得,四邊形ACDB,ACEN為矩形,
∴EN=AC=1.5,AB=CD=15,
在中,
∠MED=90°,∠MDE=45°,
∴∠EMD=∠MDE=45°,
∴ME=DE,
設ME=DE=x,則EC=x+15,
在中,∠MEC=90°,
∠MCE=35°,
∵,
∴ ,∴ ,
∴ ,
∴,
∴人民英雄紀念碑MN.的高度約為36.5米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知的三個頂點坐標分別是,,.
(1)請作出繞點逆時針旋轉的;
(2)以點為位似中心,將擴大為原來的2倍,得到,請在軸的左側畫出;
(3)請直接寫出的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在太原迎澤西大街上有一種智能垃圾桶,這種智能垃圾桶不僅可以供行人休息,燈箱邊的中部還有USB接口可供行人充電.此種垃圾桶的側面示意圖如圖所示,其中AC∥ED,AB∥EF∥GH,CD=20cm,DE=60cm,EF=100m,GH=80cm,∠CDE=∠EFG=90°,∠DEF=130°,則此種垃圾桶的高度(C到地面的距離)約為________cm.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若點(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;⑤5a﹣2b<0;其中正確的個數(shù)有( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在全國初中數(shù)學聯(lián)賽中,將參賽兩個班學生的成績(得分均為整數(shù))進行整理后分成五組,繪制出如下的頻率分布直方圖(如圖所示),已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.25、0.15、0.10、0.10,第二組的頻數(shù)是40.
(1)第二小組的頻率是_____,并補全這個頻率分布直方圖;
(2)這兩個班參賽的學生人數(shù)是_________;
(3)這兩個班參賽學生的成績的中位數(shù)落在第______組內.(不必說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點繞點A順時針旋轉α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉β得到AC',連接B'C'.當α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
①如圖2,當△ABC為等邊三角形時,AD與BC的數(shù)量關系為AD= BC;
②如圖3,當∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當△ABC為任意三角形時,猜想AD與BC的數(shù)量關系,并給予證明.
拓展應用
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內部是否存在點P,使△PDC是△PAB的“旋補三角形”?若存在,給予證明,并求△PAB的“旋補中線”長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù) (為常數(shù)),當自變量的值滿足時,其對應的函數(shù)值的最大值為,則的值為 ( )
A.2或4B.0或-4C.2或-4D.0或4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】唐山世園會期間,游樂場投資150萬元引進一項大型游樂設施.若不計維修保養(yǎng)費用,預計開放后每月可創(chuàng)收31萬元.而該游樂場開放后,從第1個月到第x個月的維修保養(yǎng)費用累計為y(萬元),且y=ax2+bx.若將創(chuàng)收扣除投資和維修保養(yǎng)費用稱為游樂場的純收益g(萬元),g也是關于x的二次函數(shù).
(1)若維修保養(yǎng)費用第1個月為2萬元,第2個月為4萬元,求y關于x的解析式;
(2)求純收益g關于x的解析式;
(3)問設施開放幾個月后,游樂場的純收益達到最大?并求出最大收益.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com