【題目】小明有5張寫(xiě)著不同數(shù)的卡片,請(qǐng)你分別按要求抽出卡片,寫(xiě)出符合要求的算式:
(1)從中取出2張卡片,使這2張卡片上的數(shù)的乘積最大;
(2)從中取出2張卡片,使這2張卡片上的數(shù)相除的商最;
(3)從中取出2張卡片,使這2張卡片上的數(shù)通過(guò)有理數(shù)的運(yùn)算后得到的結(jié)果最大;
(4)從中取出4張卡片,使這4張卡片通過(guò)有理數(shù)的運(yùn)算后得到的結(jié)果為24.(寫(xiě)出一種即可)
【答案】(1)15;(2);(3)625;(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24.
【解析】
(1)根據(jù)有理數(shù)的乘法法則即可確定;
(2)根據(jù)有理數(shù)的除法法則即可確定;
(3)根據(jù)組成數(shù)字的數(shù)的性質(zhì)(乘方)即可確定;
(4)根據(jù)有理數(shù)的混合運(yùn)算法則即可確定.
解:(1)(-3)×(-5)=15.
(2)-5÷(+3)=-.
(3)(-5)4=625.
(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在ABCD中,∠ABC=60°,且AB=BC,∠MAN=60°.請(qǐng)?zhí)剿鰾M,DN與AB的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠B=∠C,AD∥BC.
(1)證明:AD平分∠CAE;
(2)如果∠BAC=120°,求∠B的度數(shù).(不允許使用三角形內(nèi)角和為180°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,BC⊥AF于點(diǎn)C,∠A+∠1=90°.
(1)求證:AB∥DE;
(2)如圖2,點(diǎn)P從點(diǎn)A出發(fā),沿線(xiàn)段AF運(yùn)動(dòng)到點(diǎn)F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個(gè)角之間具有怎樣的數(shù)量關(guān)系(不考慮點(diǎn)P與點(diǎn)A,D,C重合的情況)?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖□ABCD的對(duì)角線(xiàn)AC,BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=600,AB=BC,連接OE .下列 結(jié)論:①∠CAD=300 ② S□ABCD=ABAC ③ OB=AB ④ OE=BC 成立的個(gè)數(shù)有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,﹣1),B(0,3),點(diǎn)M為第二象限內(nèi)一點(diǎn),且點(diǎn)M的坐標(biāo)為(t,1).
(1)請(qǐng)用含t的式子表示△ABM的面積;
(2)當(dāng)t=﹣2時(shí),在x軸的正半軸上有一點(diǎn)P,使得△BMP的面積與△ABM的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD中,E,F(xiàn)是對(duì)角線(xiàn)BD上的兩點(diǎn),如果添加一個(gè)條件,使△ABE≌△CDF,則添加的條件不能為( 。
A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y= (k>0)的圖象上兩點(diǎn)A(x1, y1)和B(x2, y2),且x1>x2>0,分別過(guò)A、B向x軸作AA1⊥x軸于A1,BB1⊥x軸于B1,則_________ (填“>”“=”或“<”),若=2,則函數(shù)解析式為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品加工廠需要一批食品包裝盒,供應(yīng)這種包裝盒有兩種方案可供選擇:
方案一:從包裝盒加工廠直接購(gòu)買(mǎi),購(gòu)買(mǎi)所需的費(fèi)y1與包裝盒數(shù)x滿(mǎn)足如圖1所示的函數(shù)關(guān)系.
方案二:租賃機(jī)器自己加工,所需費(fèi)用y2(包括租賃機(jī)器的費(fèi)用和生產(chǎn)包裝盒的費(fèi)用)與包裝盒數(shù)x滿(mǎn)足如圖2所示的函數(shù)關(guān)系.根據(jù)圖象回答下列問(wèn)題:
(1)方案一中每個(gè)包裝盒的價(jià)格是多少元?
(2)方案二中租賃機(jī)器的費(fèi)用是多少元?生產(chǎn)一個(gè)包裝盒的費(fèi)用是多少元?
(3)請(qǐng)分別求出y1、y2與x的函數(shù)關(guān)系式.
(4)如果你是決策者,你認(rèn)為應(yīng)該選擇哪種方案更省錢(qián)?并說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com