【題目】如圖,在中,,以為直徑的與邊,分別交于兩點,過點于點

1)判斷的位置關系,并說明理由;

2)求證:的中點;

3)若,,求的長.

【答案】1相切,理由見解析;(2)詳見解析;(3

【解析】

1)連結、,如圖1,先利用AB是圓的直徑得到,再根據(jù)等腰三角形的性質(zhì)得,然后利用三角形中位線定理可得,而,進一步即可證得結論;

2)連結,如圖2,根據(jù)圓內(nèi)接四邊形的性質(zhì)和等腰三角形的性質(zhì)可得,從而DE=DC,然后根據(jù)等腰三角形三線合一的性質(zhì)即可證得結論;

3)易得,利用余弦的定義,分別在中計算出ACCH的長,則CE即可求出,然后計算即可得到的長.

解:(1相切.理由如下:

連結、,如圖1,∵為直徑,∴,即,

,∴,

,∴的中位線,∴,

,∴,∴的切線;

2)證明:連結,如圖2,

∵四邊形的內(nèi)接四邊形,∴

,∴,∴,∴DE=DC.

,∴,即的中點;

3)解:如圖2,在中,∵,,∴.

中,∵,∴,∴

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】設二次函數(shù) y=ax2+bx﹣(a+b)(a,b 是常數(shù),a≠0).

(1)判斷該二次函數(shù)圖象與 x 軸的交點的個數(shù),說明理由.

(2)若該二次函數(shù)圖象經(jīng)過 A(﹣1,4),B(0,﹣1),C(1,1)三個點中的其中兩個點,求該二次函數(shù)的表達式.

(3) a+b<0,點 P(2,m)(m>0)在該二次函數(shù)圖象上,求證:a>0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將函數(shù)為常數(shù))的圖象記為圖象與直線的交點坐標為

1)若點在圖象上,求的值;

2)求的最小值;

3)當直線的圖象與函數(shù)為常數(shù))的圖像只有一個公共點時,求的取值范圍;

4)若在圖象上,且點的橫坐標為關于軸的對稱點為點.當點不在坐標軸上時,以點為頂點構造矩形使點落在軸上.當圖象與矩形的邊有兩個公共點時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國魏晉時期著名的數(shù)學家劉徽在《九章算術》中提出了“割圓術——割之彌細,所失彌少,隔之又割,以至不可割,則與圓周合體,而無所失也.”也就是利用圓的內(nèi)接多邊形逐步逼近圓的方法來近似計算圓的面積和周長.如圖1,若用圓的內(nèi)接正六邊形的面積來近似估計半徑為1的⊙O的面積,再用如圖2的圓的內(nèi)接正十二邊形的面積來近似估計半徑為1的⊙O的面積,則____(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,已知輪船甲在A處沿北偏東65°的方向勻速航行,同時輪船乙在輪船甲的南偏東40°方向的點B處沿某一方向航行,速度與甲輪船的速度相同.若經(jīng)過一段時間后,兩艘輪船恰好相遇,則輪船乙的航行方向為( 。

A.北偏西40°B.北偏東40°C.北偏西35°D.北偏東35°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】423日是世界讀書日,校文學社為了解學生課外閱讀的情況,抽樣調(diào)查了部分學生每周用于課外閱讀的時間,過程如下:

收集數(shù)據(jù):從學校隨機抽取20名,進行了每周用于課外閱讀時間的調(diào)查,數(shù)據(jù)如下(單位:):

30

60

81

50

40

110

130

146

90

100

60

81

120

140

70

81

10

20

100

81

整理數(shù)據(jù):按如下分數(shù)段整理樣本數(shù)據(jù)并補全表格:

等級

人數(shù)

3

8

4

分析數(shù)據(jù):補全下列表格中的統(tǒng)計量:

平均數(shù)

中位數(shù)

眾數(shù)

80

得出結論:

1)請寫出表中_________;___________________;

2)如果該,F(xiàn)有學生7500人,估計等級為的學生有_________名;

3)假設平均閱讀一本課外書的時間為,請你選擇一種統(tǒng)計量估計該校學生每人一年(按52周計算)平均閱讀多少本課外書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學探究活動中,敏敏進行了如下操作:如圖,將四邊形紙片沿過點的直線折疊,使得點落在上的點處,折痕為;再將分別沿折疊,此時點落在上的同一點處.請完成下列探究:

的大小為__________

當四邊形是平行四邊形時的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知C過菱形ABCD的三個頂點B,A,D,連結BD,過點AAEBD交射線CB于點E

1)求證:AEC的切線.

2)若半徑為2,求圖中線段AE、線段BE圍成的部分的面積.

3)在(2)的條件下,在C上取點F,連結AF,使∠DAF15°,求點F到直線AD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:)是反比例函數(shù)關系.當時,

(1)寫出I關于R的函數(shù)解析式;

(2)完成下表,并在給定的平面直角坐標系中畫出這個函數(shù)的圖象;

(3)如果以此蓄電池為電源的用電器的限制電流不能超過.那么用電器可變電阻應控制在什么范圍內(nèi)?

查看答案和解析>>

同步練習冊答案