【題目】如圖,在中,,以為直徑的與邊,分別交于,兩點,過點作于點.
(1)判斷與的位置關系,并說明理由;
(2)求證:為的中點;
(3)若,,求的長.
【答案】(1)與相切,理由見解析;(2)詳見解析;(3).
【解析】
(1)連結、,如圖1,先利用AB是圓的直徑得到,再根據(jù)等腰三角形的性質(zhì)得,然后利用三角形中位線定理可得,而,進一步即可證得結論;
(2)連結,如圖2,根據(jù)圓內(nèi)接四邊形的性質(zhì)和等腰三角形的性質(zhì)可得,從而DE=DC,然后根據(jù)等腰三角形三線合一的性質(zhì)即可證得結論;
(3)易得,利用余弦的定義,分別在和中計算出AC與CH的長,則CE即可求出,然后計算即可得到的長.
解:(1)與相切.理由如下:
連結、,如圖1,∵為直徑,∴,即,
∵,∴,
而,∴為的中位線,∴,
∵,∴,∴為的切線;
(2)證明:連結,如圖2,
∵四邊形為的內(nèi)接四邊形,∴,
∵,∴,∴,∴DE=DC.
∵,∴,即為的中點;
(3)解:如圖2,在中,∵,,∴.
在中,∵,∴,∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】設二次函數(shù) y=ax2+bx﹣(a+b)(a,b 是常數(shù),a≠0).
(1)判斷該二次函數(shù)圖象與 x 軸的交點的個數(shù),說明理由.
(2)若該二次函數(shù)圖象經(jīng)過 A(﹣1,4),B(0,﹣1),C(1,1)三個點中的其中兩個點,求該二次函數(shù)的表達式.
(3)若 a+b<0,點 P(2,m)(m>0)在該二次函數(shù)圖象上,求證:a>0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,將函數(shù)為常數(shù))的圖象記為圖象與直線的交點坐標為.
(1)若點在圖象上,求的值;
(2)求的最小值;
(3)當直線的圖象與函數(shù)為常數(shù))的圖像只有一個公共點時,求的取值范圍;
(4)若點在圖象上,且點的橫坐標為點關于軸的對稱點為點.當點不在坐標軸上時,以點為頂點構造矩形使點落在軸上.當圖象與矩形的邊有兩個公共點時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國魏晉時期著名的數(shù)學家劉徽在《九章算術》中提出了“割圓術——割之彌細,所失彌少,隔之又割,以至不可割,則與圓周合體,而無所失也.”也就是利用圓的內(nèi)接多邊形逐步逼近圓的方法來近似計算圓的面積和周長.如圖1,若用圓的內(nèi)接正六邊形的面積來近似估計半徑為1的⊙O的面積,再用如圖2的圓的內(nèi)接正十二邊形的面積來近似估計半徑為1的⊙O的面積,則____.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,已知輪船甲在A處沿北偏東65°的方向勻速航行,同時輪船乙在輪船甲的南偏東40°方向的點B處沿某一方向航行,速度與甲輪船的速度相同.若經(jīng)過一段時間后,兩艘輪船恰好相遇,則輪船乙的航行方向為( 。
A.北偏西40°B.北偏東40°C.北偏西35°D.北偏東35°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】4月23日是世界讀書日,校文學社為了解學生課外閱讀的情況,抽樣調(diào)查了部分學生每周用于課外閱讀的時間,過程如下:
收集數(shù)據(jù):從學校隨機抽取20名,進行了每周用于課外閱讀時間的調(diào)查,數(shù)據(jù)如下(單位:):
30 | 60 | 81 | 50 | 40 | 110 | 130 | 146 | 90 | 100 |
60 | 81 | 120 | 140 | 70 | 81 | 10 | 20 | 100 | 81 |
整理數(shù)據(jù):按如下分數(shù)段整理樣本數(shù)據(jù)并補全表格:
等級 | ||||
人數(shù) | 3 | 8 | 4 |
分析數(shù)據(jù):補全下列表格中的統(tǒng)計量:
平均數(shù) | 中位數(shù) | 眾數(shù) |
80 |
得出結論:
(1)請寫出表中_________;_________;__________;
(2)如果該,F(xiàn)有學生7500人,估計等級為“”的學生有_________名;
(3)假設平均閱讀一本課外書的時間為,請你選擇一種統(tǒng)計量估計該校學生每人一年(按52周計算)平均閱讀多少本課外書?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學探究活動中,敏敏進行了如下操作:如圖,將四邊形紙片沿過點的直線折疊,使得點落在上的點處,折痕為;再將分別沿折疊,此時點落在上的同一點處.請完成下列探究:
的大小為__________;
當四邊形是平行四邊形時的值為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙C過菱形ABCD的三個頂點B,A,D,連結BD,過點A作AE∥BD交射線CB于點E.
(1)求證:AE是⊙C的切線.
(2)若半徑為2,求圖中線段AE、線段BE和圍成的部分的面積.
(3)在(2)的條件下,在⊙C上取點F,連結AF,使∠DAF=15°,求點F到直線AD的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:)是反比例函數(shù)關系.當時,.
(1)寫出I關于R的函數(shù)解析式;
(2)完成下表,并在給定的平面直角坐標系中畫出這個函數(shù)的圖象;
… | … | |||||||||
… | … |
(3)如果以此蓄電池為電源的用電器的限制電流不能超過.那么用電器可變電阻應控制在什么范圍內(nèi)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com