分析 根據(jù)勾股定理求出BE的長,根據(jù)角平分線的性質(zhì)和勾股定理求出CD、BC的長,根據(jù)題意求出AC,根據(jù)勾股定理求出AB,計算即可.
解答 解:∵DE⊥AB,DE=3,DB=5,
∴BE=$\sqrt{B{D}^{2}-D{E}^{2}}$=4,
∵AD是∠BAC的平分線,∠C=90°,DE⊥AB,
∴CD=DE=3,
∴BC=BD+CD=8,
∵AC:BC=3:4,
∴AC=6,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=10,
∴AE=AB-BE=6.
點評 本題考查的是角平分線的性質(zhì),掌握角的平分線上的點到角的兩邊的距離相等是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com