【題目】如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點(diǎn)B為弧AN的中點(diǎn),點(diǎn)P是直徑MN上的一個(gè)動(dòng)點(diǎn),則PA+PB的最小值為( )

A.2
B.2
C.2
D.3

【答案】C
【解析】解:過(guò)A作關(guān)于直線MN的對(duì)稱點(diǎn)A′,連接A′B,由軸對(duì)稱的性質(zhì)可知A′B即為PA+PB的最小值,
連接OB,OA′,AA′,
∵AA′關(guān)于直線MN對(duì)稱,
= ,
∵∠AMN=40°,
∴∠A′ON=80°,∠BON=40°,
∴∠A′OB=120°,
過(guò)O作OQ⊥A′B于Q,
在Rt△A′OQ中,OA′=2,
∴A′B=2A′Q=2 ,
即PA+PB的最小值2
故選C.

【考點(diǎn)精析】掌握?qǐng)A周角定理和軸對(duì)稱-最短路線問(wèn)題是解答本題的根本,需要知道頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市規(guī)劃中某地段地鐵線路要穿越護(hù)城河PQ,站點(diǎn)A和站點(diǎn)B在河的兩側(cè),要測(cè)算出A、B間的距離.工程人員在點(diǎn)P處測(cè)得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達(dá)點(diǎn)Q出,測(cè)得A位于北偏東49°方向,B位于南偏西41°方向.根據(jù)以上數(shù)據(jù),求A、B間的距離.(參考數(shù)據(jù):cos41°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB是銳角,點(diǎn)D在射線BC上運(yùn)動(dòng),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到AE,連接EC.
(1)操作發(fā)現(xiàn):
若AB=AC,∠BAC=90°,當(dāng)D在線段BC上時(shí)(不與點(diǎn)B重合),如圖①所示,請(qǐng)你直接寫出線段CE和BD的位置關(guān)系和數(shù)量關(guān)系是 , ;

(2)猜想論證:
在(1)的條件下,當(dāng)D在線段BC的延長(zhǎng)線上時(shí),如圖②所示,請(qǐng)你判斷(1)中結(jié)論是否成立,并證明你的判斷.

(3)拓展延伸:
如圖③,若AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng),試探究:當(dāng)銳角∠ACB等于度時(shí),線段CE和BD之間的位置關(guān)系仍成立(點(diǎn)C、E重合除外)?此時(shí)若作DF⊥AD交線段CE于點(diǎn)F,且當(dāng)AC=3 時(shí),請(qǐng)直接寫出線段CF的長(zhǎng)的最大值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家櫻桃采摘園的品質(zhì)相同,銷售價(jià)格也相同,“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘園的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為y1(元),在乙采摘園所需總費(fèi)用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關(guān)系.
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克元;
(2)求y1、y2與x的函數(shù)表達(dá)式;
(3)在圖中畫出y1與x的函數(shù)圖象,若某人想在“五一期間”采摘櫻桃25千克,那么甲、乙哪個(gè)采摘園較為優(yōu)惠?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為點(diǎn)D,點(diǎn)E的坐標(biāo)為(0,﹣1),該拋物線與BE交于另一點(diǎn)F,連接BC.

(1)求該拋物線的解析式;
(2)一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),以每秒1個(gè)單位的速度沿與y軸平行的方向向上運(yùn)動(dòng),連接OM,BM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0),在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),∠OMB=90°?
(3)在x軸上方的拋物線上,是否存在點(diǎn)P,使得∠PBF被BA平分?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 , ,以點(diǎn)為頂點(diǎn)、為腰在第三象限作等腰

)求點(diǎn)的坐標(biāo).

)如圖, 軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)沿軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以為頂點(diǎn), 為腰作等腰,過(guò)軸于點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中, 為線段上一點(diǎn), 為射線上一點(diǎn),且,連接

)如圖

①依題意補(bǔ)全圖形.

②若, ,求的長(zhǎng).

)如圖,若,連接并延長(zhǎng),交于點(diǎn),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,F(xiàn)CD上一點(diǎn),∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度數(shù)為整數(shù),則∠C的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)規(guī)劃在一個(gè)長(zhǎng)30m、寬20m的長(zhǎng)方形土地ABCD上修建三條同樣寬的通道,使其中兩條與AB平行,另一條與AD平行,其余部分鐘花草,要使每一塊花草的面積都為78cm2 , 那么通道寬應(yīng)設(shè)計(jì)成多少m?設(shè)通道寬為xm,則由題意列得方程為( 。

A.(30﹣x)(20﹣x)=78
B.(30﹣2x)(20﹣2x)=78
C.(30﹣2x)(20﹣x)=6×78
D.(30﹣2x)(20﹣2x)=6×78

查看答案和解析>>

同步練習(xí)冊(cè)答案